skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hunter, Kara"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Proteins must be hydrated to function. Desiccation, a common event in an increasing number of ecosystems, can drive proteome-wide unfolding and aggregation. For cells to survive, proteins must disaggregate and retain their function upon rehydration. The molecular determinants that underlie protein desiccation resistance remain unknown. Here, we use mass spectrometry to show that some proteins possess an innate ability to survive dehydration and subsequent rehydration. Structural analysis correlates the ability of proteins to resist desiccation with their surface area chemistry. Remarkably, highly resistant proteins are responsible for the production of the cell's building blocks - amino acids, metabolites, and sugars. Conversely, those proteins that are desiccation-sensitive are responsible for ribosome biogenesis. As a result, the rehydrated proteome is preferentially enriched with metabolite and small molecule producers and depleted of ribosomes - the cell's heaviest consumers. We propose this functional bias allows cells to kickstart their metabolism and promote cell survival upon rehydration. 
    more » « less