skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hupp, Joseph T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 21, 2025
  2. Semiconductor nanocrystals (NCs) offer prospective use as active optical elements in photovoltaics, light-emitting diodes, lasers, and photocatalysts due to their tunable optical absorption and emission properties, high stability, and scalable solution processing, as well as compatibility with additive manufacturing routes. Over the course of experiments, during device fabrication, or while in use commercially, these materials are often subjected to intense or prolonged electronic excitation and high carrier densities. The influence of such conditions on ligand integrity and binding remains underexplored. Here, we expose CdSe NCs to laser excitation and monitor changes in oleate that is covalently attached to the NC surface using nuclear magnetic resonance as a function of time and laser intensity. Higher photon doses cause increased rates of ligand loss from the particles, with upward of 50% total ligand desorption measured for the longest, most intense excitation. Surprisingly, for a range of excitation intensities, fragmentation of the oleate is detected and occurs concomitantly with formation of aldehydes, terminal alkenes, H2, and water. After illumination, NC size, shape, and bandgap remain constant although low-energy absorption features (Urbach tails) develop in some samples, indicating formation of substantial trap states. The observed reaction chemistry, which here occurs with low photon to chemical conversion efficiency, suggests that ligand reactivity may require examination for improved NC dispersion stability but can also be manipulated to yield desired photocatalytically accessed chemical species. 
    more » « less
  3. The stability of metal–organic frameworks (MOFs) in water affects their ability to function as chemical catalysts, their capacity as adsorbents for separations in water vapor presence, and their usefulness as recyclable water harvesters. Here, we have examined water stability of four node-modified variants of the mesoporous MOF, NU-1000, namely formate-, Acac-, TFacac-, and Facac-NU-1000, comparing these with node-accessible NU-1000. These NU-1000 variants present ligands grafted to NU-1000's hexa-Zr( iv )-oxy nodes by displacing terminal aqua and hydroxo ligands. Facac-NU-1000, containing the most hydrophobic ligands, showed the greatest water stability, being able to undergo at least 20 water adsorption/desorption cycles without loss of water uptake capacity. Computational studies revealed dual salutary functions of installed Facac ligands: (1) enhancement of framework mechanical stability due to electrostatic interactions; and (2) transformation and shielding of the otherwise highly hydrophilic nodes from H-bonding interactions with free water, presumably leading to weaker channel-stressing capillary forces during water evacuation – consistent with trends in free energies of dehydration across the NU-1000 variants. Water harvesting and hydrolysis of chemical warfare agent simulants were examined to gauge the functional consequences of modification and mechanical stabilization of NU-1000 by Facac ligands. The studies revealed a harvesting capacity of ∼1.1 L of water vapor per gram of Facac-NU-1000 per sorption cycle. They also revealed retention of catalytic MOF activity following 20 water uptake and release cycles. This study provides insights into the basis for node-ligand-engendered stabilization of wide-channel MOFs against collapse during water removal. 
    more » « less
  4. null (Ed.)
  5. Abstract Efficient heterogeneous photosensitizing materials require both large accessible surface areas and excitons of suitable energies and with well‐defined spin structures. Confinement of the tetracationic cyclophane (ExBox4+) within a nonporous anionic polystyrene sulfonate (PSS) matrix leads to a surface area increase of up to 225 m2g−1in ExBox•PSS. Efficient intersystem crossing is achieved by combining the spin‐orbit coupling associated to Br heavy atoms in 1,3,5,8‐tetrabromopyrene (TBP), and the photoinduced electron transfer in a TBP⊂ExBox4+supramolecular dyad. The TBP⊂ExBox4+complex displays a charge transfer band at 450 nm and an exciplex emission at 520 nm, indicating the formation of new mixed‐electronic states. The lowest triplet state (T1, 1.89 eV) is localized on the TBP and is close in energy with the charge separated state (CT, 2.14 eV). The homogeneous and heterogeneous photocatalytic activities of the TBP⊂ExBox4+, for the elimination of a sulfur mustard simulant, has proved to be significantly more efficient than TBP and ExBox+4, confirming the importance of the newly formed excited‐state manifold in TBP⊂ExBox4+for the population of the low‐lying T1state. The high stability, facile preparation, and high performance of the TBP⊂ExBox•PSS nanocomposites augur well for the future development of new supramolecular heterogeneous photosensitizers using host–guest chemistry. 
    more » « less