skip to main content


Search for: All records

Creators/Authors contains: "Hutchings, Jennifer K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    A network of autonomous, ice-tethered buoys was deployed around the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) experiment in late September 2019 for a year-long drift in the Arctic Transpolar Drift Stream. The buoys were deployed as part of the MOSAiC distributed network (DN) which included 12 multi-instrumented ice stations and an additional 116 GPS buoys distributed primarily within a 40 km radius of the MOSAiC Central Observatory. Buoy coverage within the DN was maintained with additional deployments throughout the year-long drift allowing for collection of data over a full sea ice growth and melt cycle. All GPS position data from buoys deployed within the DN have been assembled and processed into the collection of 216 quality-controlled buoy drift tracks presented in this dataset covering the period 26 September 2019 – 23 May 2021. The drift tracks in this collection are ideal for studies of dynamic sea ice motion around the MOSAiC experiment at cascading spatial scales ranging from 100s of meters to 100s of km.

     
    more » « less
  2. Abstract

    The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) was a yearlong expedition supported by the icebreakerR/V Polarstern, following the Transpolar Drift from October 2019 to October 2020. The campaign documented an annual cycle of physical, biological, and chemical processes impacting the atmosphere-ice-ocean system. Of central importance were measurements of the thermodynamic and dynamic evolution of the sea ice. A multi-agency international team led by the University of Colorado/CIRES and NOAA-PSL observed meteorology and surface-atmosphere energy exchanges, including radiation; turbulent momentum flux; turbulent latent and sensible heat flux; and snow conductive flux. There were four stations on the ice, a 10 m micrometeorological tower paired with a 23/30 m mast and radiation station and three autonomous Atmospheric Surface Flux Stations. Collectively, the four stations acquired ~928 days of data. This manuscript documents the acquisition and post-processing of those measurements and provides a guide for researchers to access and use the data products.

     
    more » « less
  3. Abstract

    Sea ice modulates the energy exchange between the atmosphere and the ocean through its kinematics. Marginal ice zone (MIZ) dynamics are complex and are not well resolved in routine observations. Here, we investigate sea ice dynamics in the Greenland Sea MIZ using in situ and remote sensing Lagrangian drift datasets. These datasets provide a unique view into ice dynamics spanning spatial scales. We find evidence of tidal currents strongly affecting sub‐daily ice motion. Velocity anomalies show abrupt transitions aligned with gradients in seafloor topography, indicating changes in ocean currents. Remote‐sensed ice floe trajectories derived from moderate resolution satellite imagery provide a view of small‐scale variability across the Greenland continental shelf. Ice floe trajectories reveal a west‐east increasing velocity gradient imposed by the East Greenland Current, with maximum velocities aligned along the continental shelf edge. These results highlight the importance of small scale ocean variability for ice dynamics in the MIZ.

     
    more » « less
  4. Sea ice growth and decay are critical processes in the Arctic climate system, but comprehensive observations are very sparse. We analyzed data from 23 sea ice mass balance buoys (IMBs) deployed during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in 2019–2020 to investigate the seasonality and timing of sea ice thermodynamic mass balance in the Arctic Transpolar Drift. The data reveal four stages of the ice season: (I) onset of ice basal freezing, mid-October to November; (II) rapid ice growth, December–March; (III) slow ice growth, April–May; and (IV) melting, June onward. Ice basal growth ranged from 0.64 to 1.38 m at a rate of 0.004–0.006 m d–1, depending mainly on initial ice thickness. Compared to a buoy deployed close to the MOSAiC setup site in September 2012, total ice growth was about twice as high, due to the relatively thin initial ice thickness at the MOSAiC sites. Ice growth from the top, caused by surface flooding and subsequent snow-ice formation, was observed at two sites and likely linked to dynamic processes. Snow reached a maximum depth of 0.25 ± 0.08 m by May 2, 2020, and had melted completely by June 25, 2020. The relatively early onset of ice basal melt on June 7 (±10 d), 2019, can be partly attributed to the unusually rapid advection of the MOSAiC floes towards Fram Strait. The oceanic heat flux, calculated based on the heat balance at the ice bottom, was 2.8 ± 1.1 W m–2 in December–April, and increased gradually from May onward, reaching 10.0 ± 2.6 W m–2 by mid-June 2020. Subsequently, under-ice melt ponds formed at most sites in connection with increasing ice permeability. Our analysis provides crucial information on the Arctic sea ice mass balance for future studies related to MOSAiC and beyond. 
    more » « less
  5. Abstract The accuracy of sea-ice motion products provided by the National Snow and Ice Data Center (NSIDC) and the Ocean and Sea Ice Satellite Application Facility (OSI-SAF) was validated with data collected by ice drifters that were deployed in the western Arctic Ocean in 2014 and 2016. Data from both NSIDC and OSI-SAF products exhibited statistically significant ( p < 0.001) correlation with drifter data. The OSI-SAF product tended to overestimate ice speed, while underestimation was demonstrated for the NSIDC product, especially for the melt season and the marginal ice zone. Monthly Lagrangian trajectories of ice floes were reconstructed using the products. Larger spatial variability in the deviation between NSIDC and drifter trajectories was observed than that of OSI-SAF, and seasonal variability in the deviation for NSIDC was observed. Furthermore, trajectories reconstructed using the NSIDC product were sensitive to variations in sea-ice concentration. The feasibility of using remote-sensing products to characterize sea-ice deformation was assessed by evaluating the distance between two arbitrary positions as estimated by the products. Compared with the OSI-SAF product, relative errors are lower (<11.6%), and spatial-temporal resolutions are higher in the NSIDC product, which makes it more suitable for estimating sea-ice deformation. 
    more » « less
  6. Abstract. The objective of this note is to provide the backgroundand basic tools to estimate the statistical error of deformation parametersthat are calculated from displacement fields retrieved from syntheticaperture radar (SAR) imagery or from location changes of position sensors inan array. We focus here specifically on sea ice drift and deformation. Inthe most general case, the uncertainties of divergence/convergence, shear,vorticity, and total deformation are dependent on errors in coordinatemeasurements, the size of the area and the time interval over which theseparameters are determined, as well as the velocity gradients within the boundary ofthe area. If displacements are calculated from sequences of SAR images, atracking error also has to be considered. Timing errors in position readingsare usually very small and can be neglected. We give examples for magnitudesof position and timing errors typical for buoys and SAR sensors, in thelatter case supplemented by magnitudes of the tracking error, and apply thederived equations on geometric shapes frequently used for derivingdeformation from SAR images and buoy arrays. Our case studies show that thesize of the area and the time interval for calculating deformationparameters have to be chosen within certain limits to make sure that theuncertainties are smaller than the magnitude of deformation parameters. 
    more » « less
  7. Abstract

    Data collected by two buoy arrays that operated during the ice seasons of 2014/2015 and 2016/2017 were used to characterize annual cycles of ice motion and deformation in the western Arctic Ocean. An anomalously strong and weak Beaufort Gyre in 2014/2015 and 2016/2017 induced generally anticyclonic and cyclonic sea ice drift during 2014/2015 and 2016/2017, respectively. Cyclonic ice motion resulted in higher contributions of ice divergence to total ice deformation in 2016/2017 than in 2014/2015. In 2014, the autumn ice concentration and multiyear ice coverage were higher than in 2016; consequently, the response of ice motion to wind forcing was weak, and less ice deformation was observed in autumn 2014. During the autumn‐winter transition, the ice‐wind speed ratio, ice deformation rate and its spatial and temporal scaling exponents, and localization of ice deformation decreased markedly in both 2014/2015 and 2016/2017 as a result of freeze‐up and consolidation of ice floes. Such dynamic behavior was maintained through to spring with the further thickening of ice cover. Ice deformation increased due to weakened ice strength as summer approached. The amplitude of the annual cycle of ice deformation rate in the western Arctic Ocean in 2014/2015 and especially in 2016/2017 was larger than that observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) program in 1997/1998. We attribute this phenomenon to ice loss during the recent summers, especially of thick multiyear ice.

     
    more » « less
  8. Year-round observations of the physical snow and ice properties and processes that govern the ice pack evolution and its interaction with the atmosphere and the ocean were conducted during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition of the research vessel Polarstern in the Arctic Ocean from October 2019 to September 2020. This work was embedded into the interdisciplinary design of the 5 MOSAiC teams, studying the atmosphere, the sea ice, the ocean, the ecosystem, and biogeochemical processes. The overall aim of the snow and sea ice observations during MOSAiC was to characterize the physical properties of the snow and ice cover comprehensively in the central Arctic over an entire annual cycle. This objective was achieved by detailed observations of physical properties and of energy and mass balance of snow and ice. By studying snow and sea ice dynamics over nested spatial scales from centimeters to tens of kilometers, the variability across scales can be considered. On-ice observations of in situ and remote sensing properties of the different surface types over all seasons will help to improve numerical process and climate models and to establish and validate novel satellite remote sensing methods; the linkages to accompanying airborne measurements, satellite observations, and results of numerical models are discussed. We found large spatial variabilities of snow metamorphism and thermal regimes impacting sea ice growth. We conclude that the highly variable snow cover needs to be considered in more detail (in observations, remote sensing, and models) to better understand snow-related feedback processes. The ice pack revealed rapid transformations and motions along the drift in all seasons. The number of coupled ice–ocean interface processes observed in detail are expected to guide upcoming research with respect to the changing Arctic sea ice. 
    more » « less
  9. Abstract

    To track sea ice motion, four ice‐tethered buoys were deployed at 84.6°N and 144.3°W, 87.3°N and 172.3°W, 81.1°N and 157.4°W, and 82.8°N and 166.5°W in summers of 2008, 2010, 2014, and 2016, respectively. In addition, the remote sensed ice motion product provided by National Snow and Ice Data Center was used to reconstruct backward and forward ice drifting trajectories from the buoy deployment sites during 1979–2016. Sea ice in the central Arctic Ocean in late summer is trending to have travelled from lower latitudes, and to be advected to the region more involved in the Transpolar Drift Stream (TDS) during 1979–2016. The strengthened TDS has played a crucial role in Arctic sea ice loss from a dynamic perspective. The trajectory of ice is found to be significantly related to atmosphere circulation indices. The Central Arctic Index (CAI), defined as the difference in sea level pressure between 84°N, 90°W and 84°N, 90°E, can explain 34–40% of the meridional displacement along the backward trajectories, and it can explain 27–40% of the zonal displacement along the forward trajectories. The winter Beaufort High (BH) anomaly can explain 18–27% of the zonal displacement. Under high positive CAI values or high negative winter BH anomalies, floes from the central Arctic tended to be advected out of the Arctic Ocean through Fram Strait or other marginal gateways. Conversely, under high negative CAI values or high positive winter BH anomalies, ice tended to become trapped within a region close to the North Pole or it drifted into the Beaufort Gyre region. The long‐term trend and spatial change in Arctic surface air temperature were more remarkable during the freezing season than the melt season because most energy from the lower troposphere is used to melt sea ice and warm the upper ocean during summer.

     
    more » « less