skip to main content


Search for: All records

Creators/Authors contains: "Hutchinson, David K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Eocene‐Oligocene transition (EOT) marks the shift from greenhouse to icehouse conditions at 34 Ma, when a permanent ice sheet developed on Antarctica. Climate modeling studies have recently assessed the drivers of the transition globally. Here we revisit those experiments for a detailed study of the southern high latitudes in comparison to the growing number of mean annual sea surface temperature (SST) and mean air temperature (MAT) proxy reconstructions, allowing us to assess proxy‐model temperature agreement and refine estimates for the magnitude of thepCO2forcing of the EOT. We compile and update published proxy temperature records on and around Antarctica for the late Eocene (38–34 Ma) and early Oligocene (34–30 Ma). Compiled SST proxies cool by up to 3°C and MAT by up to 4°C between the timeslices. Proxy data were compared to previous climate model simulations representing pre‐ and post‐EOT, typically forced with a halving ofpCO2. We scaled the model outputs to identify the magnitude ofpCO2change needed to drive a commensurate change in temperature to best fit the temperature proxies. The multi‐model ensemble needs a 30 or 33% decrease inpCO2, to best fit MAT or SST proxies respectively. These proxy‐model intercomparisons identify decliningpCO2as the primary forcing of EOT cooling, with a magnitude (200 or 243 ppmv) approaching that of thepCO2proxies (150 ppmv). However individual model estimates span a decrease of 66–375 ppmv, thus proxy‐model uncertainties are dominated by model divergence.

     
    more » « less
  2. null (Ed.)
    Abstract. Accurate estimates of past global mean surface temperature (GMST) help tocontextualise future climate change and are required to estimate thesensitivity of the climate system to CO2 forcing through Earth's history.Previous GMST estimates for the latest Paleocene and early Eocene(∼57 to 48 million years ago) span a wide range(∼9 to 23 ∘C higher than pre-industrial) andprevent an accurate assessment of climate sensitivity during this extremegreenhouse climate interval. Using the most recent data compilations, weemploy a multi-method experimental framework to calculate GMST during thethree DeepMIP target intervals: (1) the latest Paleocene (∼57 Ma), (2) the Paleocene–Eocene Thermal Maximum (PETM; 56 Ma), and (3) the earlyEocene Climatic Optimum (EECO; 53.3 to 49.1 Ma). Using six differentmethodologies, we find that the average GMST estimate (66 % confidence)during the latest Paleocene, PETM, and EECO was 26.3 ∘C (22.3 to28.3 ∘C), 31.6 ∘C (27.2 to 34.5 ∘C), and27.0 ∘C (23.2 to 29.7 ∘C), respectively. GMST estimatesfrom the EECO are ∼10 to 16 ∘C warmer thanpre-industrial, higher than the estimate given by the Intergovernmental Panel on Climate Change (IPCC) 5thAssessment Report (9 to 14 ∘C higher than pre-industrial).Leveraging the large “signal” associated with these extreme warm climates,we combine estimates of GMST and CO2 from the latest Paleocene, PETM,and EECO to calculate gross estimates of the average climate sensitivitybetween the early Paleogene and today. We demonstrate that “bulk”equilibrium climate sensitivity (ECS; 66 % confidence) during the latestPaleocene, PETM, and EECO is 4.5 ∘C (2.4 to 6.8 ∘C),3.6 ∘C (2.3 to 4.7 ∘C), and 3.1 ∘C (1.8 to4.4 ∘C) per doubling of CO2. These values are generallysimilar to those assessed by the IPCC (1.5 to 4.5 ∘C per doublingCO2) but appear incompatible with low ECS values (<1.5 perdoubling CO2). 
    more » « less