skip to main content

Search for: All records

Creators/Authors contains: "Hwang, Harold Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. As a real-space technique, atomic-resolution STEM imaging contains both amplitude and geometric phase information about structural order in materials, with the latter encoding important information about local variations and heterogeneities present in crystalline lattices. Such phase information can be extracted using geometric phase analysis (GPA), a method which has generally focused on spatially mapping elastic strain. Here we demonstrate an alternative phase demodulation technique and its application to reveal complex structural phenomena in correlated quantum materials. As with other methods of image phase analysis, the phase lock-in approach can be implemented to extract detailed information about structural order and disorder, including dislocations and compound defects in crystals. Extending the application of this phase analysis to Fourier components that encode periodic modulations of the crystalline lattice, such as superlattice or secondary frequency peaks, we extract the behavior of multiple distinct order parameters within the same image, yielding insights into not only the crystalline heterogeneity but also subtle emergent order parameters such as antipolar displacements. When applied to atomic-resolution images spanning large (~0.5 × 0.5 μ m 2 ) fields of view, this approach enables vivid visualizations of the spatial interplay between various structural orders in novel materials.
    Free, publicly-accessible full text available April 1, 2023
  2. Abstract

    Lithium intercalation of MoS2is generally believed to introduce a phase transition from H phase (semiconducting) to T phase (metallic). However, during the intercalation process, a spatially sharp boundary is usually formed between the fully intercalated T phase MoS2and non-intercalated H phase MoS2. The intermediate state,i.e., lightly intercalated H phase MoS2without a phase transition, is difficult to investigate by optical-microscope-based spectroscopy due to the narrow size. Here, we report the stabilization of the intermediate state across the whole flake of twisted bilayer MoS2. The twisted bilayer system allows the lithium to intercalate from the top surface and enables fast Li-ion diffusion by the reduced interlayer interaction. TheE2gRaman mode of the intermediate state shows a peak splitting behavior. Our simulation results indicate that the intermediate state is stabilized by lithium-induced symmetry breaking of the H phase MoS2. Our results provide an insight into the non-uniform intercalation during battery charging and discharging, and also open a new opportunity to modulate the properties of twisted 2D systems with guest species doping in the Moiré structures.

  3. Abstract

    The self-organization of strongly interacting electrons into superlattice structures underlies the properties of many quantum materials. How these electrons arrange within the superlattice dictates what symmetries are broken and what ground states are stabilized. Here we show that cryogenic scanning transmission electron microscopy (cryo-STEM) enables direct mapping of local symmetries and order at the intra-unit-cell level in the model charge-ordered system Nd1/2Sr1/2MnO3. In addition to imaging the prototypical site-centered charge order, we discover the nanoscale coexistence of an exotic intermediate state which mixes site and bond order and breaks inversion symmetry. We further show that nonlinear coupling of distinct lattice modes controls the selection between competing ground states. The results demonstrate the importance of lattice coupling for understanding and manipulating the character of electronic self-organization and that cryo-STEM can reveal local order in strongly correlated systems at the atomic scale.

  4. The recent observation of superconductivity in N d 0.8 S r 0.2 N i O 2 has raised fundamental questions about the hierarchy of the underlying electronic structure. Calculations suggest that this system falls in the Mott–Hubbard regime, rather than the charge-transfer configuration of other nickel oxides and the superconducting cuprates. Here, we use state-of-the-art, locally resolved electron energy-loss spectroscopy to directly probe the Mott–Hubbard character of N d 1 − x S r x N i O 2 . Upon doping, we observe emergent hybridization reminiscent of the Zhang–Rice singlet via the oxygen-projected states, modification of the Nd 5d states, and the systematic evolution of Ni 3d hybridization and filling. These experimental data provide direct evidence for the multiband electronic structure of the superconducting infinite-layer nickelates, particularly via the effects of hole doping on not only the oxygen but also nickel and rare-earth bands.
  5. Abstract

    Quantum ground states that arise at atomically controlled oxide interfaces provide an opportunity to address key questions in condensed matter physics, including the nature of two-dimensional metallic behaviour often observed adjacent to superconductivity. At the superconducting LaAlO3/SrTiO3interface, a metallic ground state emerges upon the collapse of superconductivity with field-effect gating and is accompanied with a pseudogap. Here we utilize independent control of carrier density and disorder of the interfacial superconductor using dual electrostatic gates, which enables the comprehensive examination of the electronic phase diagram approaching zero temperature. We find that the pseudogap corresponds to precursor pairing, and the onset of long-range phase coherence forms a two-dimensional superconducting dome as a function of the dual-gate voltages. The gate-tuned superconductor–metal transitions are driven by macroscopic phase fluctuations of Josephson coupled superconducting puddles.