skip to main content

Search for: All records

Creators/Authors contains: "Hyndman, David W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract

    Many irrigated agricultural areas seek to prolong the lifetime of their groundwater resources by reducing pumping. However, it is unclear how lagged responses, such as reduced groundwater recharge caused by more efficient irrigation, may impact the long‐term effectiveness of conservation initiatives. Here, we use a variably saturated, simplified surrogate groundwater model to: (a) analyze aquifer responses to pumping reductions, (b) quantify time lags between reductions and groundwater level responses, and (c) identify the physical controls on lagged responses. We explore a range of plausible model parameters for an area of the High Plains aquifer (USA) where stakeholder‐driven conservation has slowed groundwater depletion. We identify two types of lagged responses that reduce the long‐term effectiveness of groundwater conservation, recharge‐dominated and lateral‐flow‐dominated, with vertical hydraulic conductivity (KZ) the major controlling variable. When highKZallows percolation to reach the aquifer, more efficient irrigation reduces groundwater recharge. By contrast, when lowKZimpedes vertical flow, short term changes in recharge are negligible, but pumping reductions alter the lateral flow between the groundwater conservation area and the surrounding regions (lateral‐flow‐dominated response). For the modeled area, we found that a pumping reduction of 30% resulted in median usable lifetime extensions of 20 or 25 years, depending on the dominant lagged response mechanism (recharge‐ vs. lateral‐flow‐dominated). These estimates are far shorter than estimates that do not account for lagged responses. Results indicate that conservation‐based pumping reductions can extend aquifer lifetimes, but lagged responses can create a sizable difference between the initially perceived and actual long‐term effectiveness.

    more » « less
  5. Efficient irrigation technologies, which seem to promise reduced production costs and water consumption in heavily irrigated areas, may instead be driving increased irrigation use in areas that were not traditionally irrigated. As a result, the total dependence on supplemental irrigation for crop production and revenue is steadily increasing across the contiguous United States. Quantifying this dependence has been hampered by a lack of comprehensive irrigated and dryland yield and harvested area data outside of major irrigated regions, despite the importance and long history of irrigation applications in agriculture. This study used a linear regression model to disaggregate lumped agricultural statistics and estimate average irrigated and dryland yields at the state level for five major row crops: corn, cotton, hay, soybeans, and wheat. For 1945–2015, we quantified crop production, irrigation enhancement revenue, and irrigated and dryland areas in both intensively irrigated and marginally-dependent states, where both irrigated and dryland farming practices are implemented. In 2015, we found that irrigating just the five commodity crops enhanced revenue by ~$7 billion across all states with irrigation. In states with both irrigated and dryland practices, 23% of total produced area relied on irrigation, resulting in 7% more production than from dryland practices. There was a clear response to increasing biofuel demand, with the addition of more than 3.6 million ha of irrigated corn and soybeans in the last decade in marginally-dependent states. Since 1945, we estimate that yield enhancement due to irrigation has resulted in over $465 billion in increased revenue across the contiguous United States (CONUS). Example applications of this dataset include estimating historical water use, evaluating the effects of environmental policies, developing new resource management strategies, economic risk analyses, and developing tools for farmer decision making. 
    more » « less
  6. Hydropower has been the leading source of renewable energy across the world, accounting for up to 71% of this supply as of 2016. This capacity was built up in North America and Europe between 1920 and 1970 when thousands of dams were built. Big dams stopped being built in developed nations, because the best sites for dams were already developed and environmental and social concerns made the costs unacceptable. Nowadays, more dams are being removed in North America and Europe than are being built. The hydropower industry moved to building dams in the developing world and since the 1970s, began to build even larger hydropower dams along the Mekong River Basin, the Amazon River Basin, and the Congo River Basin. The same problems are being repeated: disrupting river ecology, deforestation, losing aquatic and terrestrial biodiversity, releasing substantial greenhouse gases, displacing thousands of people, and altering people’s livelihoods plus affecting the food systems, water quality, and agriculture near them. This paper studies the proliferation of large dams in developing countries and the importance of incorporating climate change into considerations of whether to build a dam along with some of the governance and compensation challenges. We also examine the overestimation of benefits and underestimation of costs along with changes that are needed to address the legitimate social and environmental concerns of people living in areas where dams are planned. Finally, we propose innovative solutions that can move hydropower toward sustainable practices together with solar, wind, and other renewable sources. 
    more » « less