Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Despite recent advances, the need for improved non-destructive evaluation (NDE) techniques to detect and quantify early-stage damage in polymer matrix composites remains critical. A recently developed microwave based NDE technique which capitalizes on the ubiquitous presence of moisture within a polymer matrix has yielded positive results. The chemical state of moisture directly affects dielectric properties of a polymer matrix composite. Thus, the preferential diffusion of ‘free’ water into microcracks and voids associated with physical damage allows for damage detection through spatial permittivity mapping using techniques that are sensitive to moisture content and molecular water state. While it has been demonstrated that the method can detect damage at low levels of moisture and impact damage, the specific parameters under which the technique will accurately and reliably capture damage within a composite are unknown. The three variables affecting the performance of the method to detect impact damage are moisture content, extent of damage, and resolution of the dielectric scanning technique. Here, we report on the impact of the latter as a function of the two environmental variables (moisture and damage extent). To understand limits and optimize execution of the technique, the interrelationships between each of the variables must be explored. This study investigates the relationship between moisture content and scan resolution. Two BMI/quartz laminates were impacted at 9 Joules to induce barely visible impact damage. The specimens were inspected at a variety of gravimetric moisture levels, and several variations of the spatial permittivity map were created for each moisture level. Detection standards for the technique were investigated based on moisture content and desired scan accuracy; findings showed at 0.05-0.4% moisture content (by wt.) the technique can detect damage location and size with a minimum of 88% accuracy. Pareto frontiers were generated at each moisture level to optimize scan speed and accuracy.
-
null (Ed.)Leveraging the state of absorbed moisture within a polymer network to identify physical and chemical features of the host material is predicated upon a clear understanding of the interaction between the polymer and a penetrant water molecule; an understanding that has remained elusive. Recent work has revealed that a novel damage detection method that exploits the very low baseline levels of water typically found in polymer matrix composites (PMC) may be a valuable tool in the composite NDE arsenal, provided that a clear understanding of polymer–water interaction can be obtained. Precise detection, location, and possible quantification of the extent of damage can be performed by characterizing the physical and chemical states of moisture present in an in-service PMC. Composite structures have a locally elevated dielectric constant near the damage sites due to a higher fraction of bulk (“free”) water, which has a higher dielectric constant when compared to water molecules bound to the polymer network through secondary bonding interactions. In this study, we aim to get a clear atomistic scale picture of the interactions which drive the dielectric signature variations necessary for tracking damage. Molecular Dynamics (MD) simulations were used to explore the effect of temperature on the state of moisture in two epoxy matrices with identical chemical constituents but different morphologies. The motivation was to understand whether higher polarity binds a greater fraction of moisture even at higher temperatures, leading to suppressed dielectric activity. Consequently, the influence of secondary bonding interactions was investigated to understand the impact of temperature on the absorbed water molecules in a composite epoxy matrix.more » « less
-
Abstract Polymeric composites absorb measurable amounts of moisture from their environment in almost all operating conditions. This absorbed moisture exists either in the “free” state, without any interactions, or in the “bound” state—interacting with the polymer matrix via secondary bonding mechanisms. The ratio and distribution of these water states within a moisture‐contaminated polymer composite are sensitive to physical damage. However, the water state distribution is also affected by variations in total water content resulting from humidity or precipitation‐driven fluctuations in the ambient environment, which could confound the ability to detect damage within the polymer matrix using this technique. To understand the effect of moisture content variations on water state distribution, low levels of barely visible impact damage were induced in epoxy/glass fiber composites. Spatial variations in polymer–water interactions were identified by their characteristic dielectric properties, measured using a split post dielectric resonator operating at 5 GHz. Gravimetric moisture uptake and relative permittivity were monitored during the absorption and desorption processes. Results indicate moisture absorption/desorption history has a significant effect on the sensitivity of damage detection using water state variations. Damage‐dependent hysteresis was observed in relative permittivity, highlighting an avenue by which the confounding effects of moisture absorption/desorption history may be mitigated.