skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Igarashi, Ayumi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2025
  2. We initiate the study of fairness among classes of agents in online bipartite matching where there is a given set of offline vertices (aka agents) and another set of vertices (aka items) that arrive online and must be matched irrevocably upon arrival. In this setting, agents are partitioned into a set of classes and the matching is required to be fair with respect to the classes. We adopt popular fairness notions (e.g. envy-freeness, proportionality, and maximin share) and their relaxations to this setting and study deterministic and randomized algorithms for matching indivisible items (leading to integral matchings) and for matching divisible items (leading to fractional matchings).For matching indivisible items, we propose an adaptive-priority-based algorithm, MATCH-AND-SHIFT, prove that it achieves (1/2)-approximation of both class envy-freeness up to one item and class maximin share fairness, and show that each guarantee is tight. For matching divisible items, we design a water-filling-based algorithm, EQUAL-FILLING, that achieves (1-1/e)-approximation of class envy-freeness and class proportionality; we prove (1-1/e) to be tight for class proportionality and establish a 3/4 upper bound on class envy-freeness. 
    more » « less
  3. null (Ed.)
    We initiate the study of multi-layered cake cutting with the goal of fairly allocating multiple divisible resources (layers of a cake) among a set of agents. The key requirement is that each agent can only utilize a single resource at each time interval. Several real-life applications exhibit such restrictions on overlapping pieces, for example, assigning time intervals over multiple facilities and resources or assigning shifts to medical professionals. We investigate the existence and computation of envy-free and proportional allocations. We show that envy-free allocations that are both feasible and contiguous are guaranteed to exist for up to three agents with two types of preferences, when the number of layers is two. We further devise an algorithm for computing proportional allocations for any number of agents when the number of layers is factorable to three and/or some power of two. 
    more » « less