skip to main content

Search for: All records

Creators/Authors contains: "Igbe, O."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Software Keyloggers are dominant class of malicious applications that surreptitiously logs all the user activity to gather confidential information. Among many other types of keyloggers, API-based keyloggers can pretend as unprivileged program running in a user-space to eavesdrop and record all the keystrokes typed by the user. In a Linux environment, defending against these types of malware means defending the kernel against being compromised and it is still an open and difficult problem. Considering how recent trend of edge computing extends cloud computing and the Internet of Things (IoT) to the edge of the network, a new types of intrusiondetection system (IDS) has been used to mitigate cybersecurity threats in edge computing. Proposed work aims to provide secure environment by constantly checking virtual machines for the presence of keyloggers using cutting edge artificial immune system (AIS) based technology. The algorithms that exist in the field of AIS exploit the immune system’s characteristics of learning and memory to solve diverse problems. We further present our approach by employing an architecture where host OS and a virtual machine (VM) layer actively collaborate to guarantee kernel integrity. This collaborative approach allows us to introspect VM by tracking events (interrupts, system calls, memory writes,more »network activities, etc.) and to detect anomalies by employing negative selection algorithm (NSA).« less
  2. One of the effective ways of detecting malicious traffic in computer networks is intrusion detection systems (IDS). Though IDS identify malicious activities in a network, it might be difficult to detect distributed or coordinated attacks because they only have single vantage point. To combat this problem, cooperative intrusion detection system was proposed. In this detection system, nodes exchange attack features or signatures with a view of detecting an attack that has previously been detected by one of the other nodes in the system. Exchanging of attack features is necessary because a zero-day attacks (attacks without known signature) experienced in different locations are not the same. Although this solution enhanced the ability of a single IDS to respond to attacks that have been previously identified by cooperating nodes, malicious activities such as fake data injection, data manipulation or deletion and data consistency are problems threatening this approach. In this paper, we propose a solution that leverages blockchain’s distributive technology, tamper-proof ability and data immutability to detect and prevent malicious activities and solve data consistency problems facing cooperative intrusion detection. Focusing on extraction, storage and distribution stages of cooperative intrusion detection, we develop a blockchain-based solution that securely extracts features or signatures,more »adds extra verification step, makes storage of these signatures and features distributive and data sharing secured. Performance evaluation of the system with respect to its response time and resistance to the features/signatures injection is presented. The result shows that the proposed solution prevents stored attack features or signature against malicious data injection, manipulation or deletion and has low latency.« less