- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
00000010000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Heavner, N. (1)
-
Igual, F. D. (1)
-
Martinsson, P. G. (1)
-
Quintana-Ortí, G. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Randomized singular value decomposition (RSVD) is by now a well-established technique for efficiently computing an approximate singular value decomposition of a matrix. Building on the ideas that underpin RSVD, the recently proposed algorithm “randUTV” computes a full factorization of a given matrix that provides low-rank approximations with near-optimal error. Because the bulk of randUTV is cast in terms of communication-efficient operations such as matrix-matrix multiplication and unpivoted QR factorizations, it is faster than competing rank-revealing factorization methods such as column-pivoted QR in most high-performance computational settings. In this article, optimized randUTV implementations are presented for both shared-memory and distributed-memory computing environments. For shared memory, randUTV is redesigned in terms of an algorithm-by-blocks that, together with a runtime task scheduler, eliminates bottlenecks from data synchronization points to achieve acceleration over the standard blocked algorithm based on a purely fork-join approach. The distributed-memory implementation is based on the ScaLAPACK library. The performance of our new codes compares favorably with competing factorizations available on both shared-memory and distributed-memory architectures.more » « less