skip to main content


Search for: All records

Creators/Authors contains: "Ihlefeld, Jon F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lithium lanthanum tantalate (Li3xLa1/3−xTaO3, x = 0.075) thin films were grown via pulsed laser deposition using background gas atmospheres with varying partial pressures of oxygen and argon. The background gas composition was varied from 100% to 6.6% oxygen, with the pressure fixed at 150 mTorr. The maximum ion conductivity of 1.5 × 10−6 S/cm was found for the film deposited in 100% oxygen. The ion conductivity of the films was found to decrease with reduced oxygen content from 100% to 16.6% O2 in the background gas. The 6.6% oxygen background condition produced ion conductivity that approached that of the 100% oxygen condition film. The lithium transfer from the target to the film was found to decrease monotonically with decreasing oxygen content in the background gas but did not account for all changes in the ion conductivity. The activation energy of ion conduction was measured and found to correlate well with the measured ion conductivity trends. Analysis of x-ray diffraction results revealed that the films also exhibited a change in the lattice parameter that directly correlated with the ion conduction activation energy, indicating that a primary factor for determining the conductivity of these films is the changing size of the ion conduction bottleneck, which controls the activation energy of ion conduction.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. Aluminum scandium alloys and their intermetallic phases have arisen as potential candidates for the next generation of electrical interconnects. In this work, we measure the in-plane thermal conductivity and electron–phonon coupling factor of aluminum scandium alloy thin films deposited at different temperatures, where the temperature is used to control the grain size and volume fraction of the Al3Sc intermetallic phase. As the Al3Sc intermetallic formation increases with higher deposition temperature, we measure increasing in-plane thermal conductivity and a decrease in the electron–phonon coupling factor, which corresponds to an increase in grain size. Our findings demonstrate the role that chemical ordering from the formation of the intermetallic phase has on thermal transport.

     
    more » « less
    Free, publicly-accessible full text available May 13, 2025
  3. The impact of the high-power impulse magnetron sputtering (HiPIMS) pulse width on the crystallization, microstructure, and ferroelectric properties of undoped HfO2 films is investigated. HfO2 films were sputtered from a hafnium metal target in an Ar/O2 atmosphere, varying the instantaneous power density by changing the HiPIMS pulse width with fixed time-averaged power and pulse frequency. The pulse width is shown to affect the ion-to-neutral ratio in the depositing species with the shortest pulse durations leading to the highest ion fraction. In situ x-ray diffraction measurements during crystallization demonstrate that the HiPIMS pulse width impacts nucleation and phase formation, with an intermediate pulse width of 110 μs stabilizing the ferroelectric phase over the widest temperature range. Although the pulse width impacts the grain size with the lowest pulse width resulting in the largest grain size, the grain size does not strongly correlate with the phase content or ferroelectric behavior in these films. These results suggest that precise control over the energetics of the depositing species may be beneficial for forming the ferroelectric phase in this material.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  4. Abstract Temperature limitations in nickel‐base superalloys have resulted in the emergence of SiC‐based ceramic matrix composites as a viable replacement for gas turbine components in aviation applications. Higher operating temperatures allow for reduced fuel consumption but present a materials design challenge related to environmental degradation. Rare‐earth disilicates (RE 2 Si 2 O 7 ) have been identified as coatings that can function as environmental barriers and minimize hot component degradation. In this work, single‐ and multiple‐component rare‐earth disilicate powders were synthesized via a sol‐gel method with compositions selected to exist in the monoclinic C 2/ m phase ( β phase). Phase stability in multiple cation compositions was shown to follow a rule of mixtures and the C 2/ m phase could be realized for compositions that contained up to 25% dysprosium, which typically only exists in a triclinic, P , phase. All compositions exhibited phase stability from room temperature to 1200°C as assessed by X‐ray diffraction. The thermal expansion tensors for each composition were determined from high‐temperature synchrotron X‐ray diffraction and accompanying Rietveld refinements. It was observed that ytterbium‐containing compositions had larger changes in the α 31 shear component with increasing temperature that led to a rotation of the principal axes. Principal axes rotation of up to 47° were observed for ytterbium disilicate. The results suggest that microstructure design and crystallographic texture may be essential future avenues of investigation to ensure thermo‐mechanical robustness of rare‐earth disilicate environmental barrier coatings. 
    more » « less
  5. We report on the synthesis of self-intercalated Nb1+xSe2 thin films by molecular beam epitaxy. Nb1+xSe2 is a metal-rich phase of NbSe2 where additional Nb atoms populate the van der Waals gap. The grown thin films are studied as a function of the Se to Nb beam equivalence pressure ratio (BEPR). X-ray photoelectron spectroscopy and x-ray diffraction indicate that BEPRs of 5:1 and greater result in the growth of the Nb1+xSe2 phase and that the amount of intercalation is inversely proportional to the Se to Nb BEPR. Electrical resistivity measurements also show an inverse relationship between BEPR and resistivity in the grown Nb1+xSe2 thin films. A second Nb-Se compound with a stoichiometry of ∼1:1 was synthesized using a Se to Nb BEPR of 2:1; in contrast to the Nb1+xSe2 thin films, this compound did not show evidence of a layered structure.

     
    more » « less
  6. Ferroelectric hafnium oxides are poised to impact a wide range of microelectronic applications owing to their superior thickness scaling of ferroelectric stability and compatibility with mainstream semiconductors and fabrication processes. For broad-scale impact, long-term performance and reliability of devices using hafnia will require knowledge of the phases present and how they vary with time and use. In this Perspective article, the importance of phases present on device performance is discussed, including the extent to which specific classes of devices can tolerate phase impurities. Following, the factors and mechanisms that are known to influence phase stability, including substituents, crystallite size, oxygen point defects, electrode chemistry, biaxial stress, and electrode capping layers, are highlighted. Discussions will focus on the importance of considering both neutral and charged oxygen vacancies as stabilizing agents, the limited biaxial strain imparted to a hafnia layer by adjacent electrodes, and the strong correlation of biaxial stress with resulting polarization response. Areas needing additional research, such as the necessity for a more quantitative means to distinguish the metastable tetragonal and orthorhombic phases, quantification of oxygen vacancies, and calculation of band structures, including defect energy levels for pure hafnia and stabilized with substituents, are emphasized.

     
    more » « less
  7. Abstract

    Rare‐earth disilicates are a focus of study for use as environmental barrier coatings in gas‐turbine engines. These coatings require thermomechanical and thermochemical stability at elevated temperatures and properties can be tailored through the use of multicomponent rare‐earth disilicates. Producing rare‐earth disilicates via sol–gel is documented in literature, but there are differing procedures with varying phase purities. This work establishes trends that dictate the effects of water content, pH, and heat treatment conditions that determine the final phase purity of Yb, Er, Lu, Sc, and Y disilicate powders made via sol–gel. The phase(s) of the powders were identified and quantified using X‐ray diffraction (XRD) to extract weight fractions. In situ XRD during heating from room temperature to 1200°C was used to observe the crystallization and phase evolution of the sol–gel‐based powders, allowing for the identification of a rarely reported low temperature triclinic phase in ytterbium‐, erbium‐, and lutetium‐based disilicate sol–gels that forms prior to transformation into a monoclinic phase. Ex situ XRD allowed for the phase identification of sol–gels processed at 1400°C. These experiments demonstrated that phase‐pure disilicates could be formed under conditions with no intentional water additions, a target pH of 2, and long heat treatment times at high temperatures (e.g., 1400°C). These conditions remain valid for not only single‐cation rare‐earth disilicates of Yb, Er, Lu, Sc, and Y but also a multicomponent disilicate containing equimolar concentrations of all of these cations.

     
    more » « less
  8. Abstract Materials with tunable thermal properties enable on-demand control of temperature and heat flow, which is an integral component in the development of solid-state refrigeration, energy scavenging, and thermal circuits. Although gap-based and liquid-based thermal switches that work on the basis of mechanical movements have been an effective approach to control the flow of heat in the devices, their complex mechanisms impose considerable costs in latency, expense, and power consumption. As a consequence, materials that have multiple solid-state phases with distinct thermal properties are appealing for thermal management due to their simplicity, fast switching, and compactness. Thus, an ideal thermal switch should operate near or above room temperature, have a simple trigger mechanism, and offer a quick and large on/off switching ratio. In this study, we experimentally demonstrate that manipulating phonon scattering rates can switch the thermal conductivity of antiferroelectric PbZrO 3 bidirectionally by −10% and +25% upon applying electrical and thermal excitation, respectively. Our approach takes advantage of two separate phase transformations in PbZrO 3 that alter the phonon scattering rate in different manners. In this study, we demonstrate that PbZrO 3 can serve as a fast (<1 second), repeatable, simple trigger, and reliable thermal switch with a net switching ratio of nearly 38% from ~1.20 to ~1.65 W m −1 K −1 . 
    more » « less
  9. While ferroelectric HfO2shows promise for use in memory technologies, limited endurance is one factor that challenges its widespread application. Herein, endurance is investigated through field cycling W/Hf0.5Zr0.5O2/W capacitors above the coercive field while manipulating the time under field using bipolar pulses of varying pulse duration or duty cycle. Both remanent polarization and leakage current increase with increasing pulse duration. Additionally, an order of magnitude decrease in the pulse duration from 20 to 2 μs results in an increase in endurance lifetime of nearly two orders of magnitude from 3 × 106to 2 × 108cycles. These behaviors are attributed to increasing time under field allowing for charged oxygen vacancy migration, initially unpinning domains, or driving phase transformations before segregating to grain boundaries and electrode interfaces. This oxygen vacancy migration causes increasing polarization before creating conducting percolation paths that result in degradation and premature device failure. This process is suppressed for 2 μs pulse duration field cycling where minimal wake‐up and lower leakage before device failure are observed, suggesting that very short pulses can be used to significantly increase device endurance. These results provide insight into the impact of pulse duration on device performance and highlight consideration of use of conditions when endurance testing.

     
    more » « less