Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            This work discusses the development, verification and performance assessment of a discontinuous Galerkin solver for the compressible Navier-Stokes equations using the Legion programming system. This is motivated by (i) the potential of this family of high-order numer- ical methods to accurately and efficiently realize scale-resolving simulations on unstructured grids and (ii) the desire to accommodate the utilization of emerging compute platforms that exhibit increased parallelism and heterogeneity. As a task-based programming model specifically designed for performance portability across distributed heterogeneous architectures, Legion represents an interesting lternative to the traditional approach of using Message Passing Interface for massively parallel computational physics solvers. Following detailed discussion of the implementation, the high-order convergence of the solver is demonstrated by a suite of canonical test cases and good strong scaling behavior is obtained. This work constitutes a first step towards a research platform that is able to be deployed and efficiently run on modern supercomputers.more » « less
- 
            null (Ed.)Infrasound observations are commonly used to constrain properties of subaerial volcanic eruptions. In order to better interpret infrasound observations, however, there is a need to better understand the relationship between eruption properties and sound generation. Here we perform two-dimensional computational aeroacoustic simulations where we solve the compressible Navier-Stokes equations with a large-eddy simulation approximation. We simulate idealized impulsive volcanic eruptions where the exit velocity is specified and the eruption is pressure-balanced with the atmosphere. Our nonlinear simulation results are compared with the commonly used analytical linear acoustics model of a compact monopole source radiating acoustic waves isotropically in a half space. The monopole source model matches the simulations for low exit velocities (M < 0.3 where M is the Mach number); however, the two solutions diverge as the exit velocity increases with the simulations developing lower peak amplitude and more rapid onset. For high exit velocities (M>0.8) the radiation pattern becomes anisotropic, with stronger infrasound signals recorded above the vent than on Earth's surface (50% greater peak amplitude for an eruption with M=0.95) and interpreting ground-based infrasound observations with the monopole source model can result in an underestimation of the erupted volume. We examine nonlinear effects and show that nonlinear effects during propagation are relatively minor. Instead, the dominant nonlinear effect is sound generation by the complex flow structure that develops above the vent. This work demonstrates the need to consider anisotropic radiation patterns and near-vent fluid flow when interpreting infrasound observations, particularly for eruptions with sonic or supersonic exit velocities.more » « less
- 
            Macroporous ceramic materials are ubiquitous in numerous energy‐conversion and thermal‐management systems. The morphology and material composition influence the effective thermophysical properties of macroporous ceramic structures and interphase transport in interactions with the working fluid. Therefore, tailoring these properties can enable significant performance enhancements by modulating thermal transport, reactivity, and stability. However, conventional ceramic‐matrix fabrication techniques limit the ability for tailoring the porous structure and optimizing the performance of these systems, such as by introducing anisotropic morphologies, pore‐size gradations, and variations in pore connectivity and material properties. Herein, an integrated framework is proposed for enabling the design, optimization, and fabrication of tailored ceramic porous structures by combining computational modeling, mathematically defined surfaces, and lithography‐based additive manufacturing. The benefits of pore‐structure tailoring are illustrated experimentally for interstitial combustion in a porous‐media burner operating with a smoothly graded matrix structure. In addition, a remarkable range of achievable thermal conductivities for a single material is demonstrated with tuning of the fabrication process, thus providing unique opportunities for modulating thermal transport properties of porous‐ceramic structures.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available