skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ikeda, Kazuki"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In quantum many-body spin systems, the interplay between the entangling effect of multiqubit Pauli measurements and the disentangling effect of single-qubit Pauli measurements may give rise to two competing effects. By introducing a randomized measurement pattern with such bases, a phase transition can be induced by altering the ratio between them. In this work, we numerically investigate a measurement-based model associated with the Fradkin-Shenker Hamiltonian that encompasses the deconfining, confining, and Higgs phases. We determine the phase diagram in our measurement-only model by employing entanglement measures. For the bulk topological order, we use the topological entanglement entropy. We also use the mutual information between separated boundary regions to diagnose the boundary phase transition associated with the Higgs or the bulk symmetry-protected topological (SPT) phase. We observe the structural similarity between our phase diagram and the one in the standard quantum Hamiltonian formulation of the Fradkin-Shenker model with the open rough boundary. First, a deconfining phase is detected by nonzero and constant topological entanglement entropy. Second, we find a (boundary) phase transition curve separating the Higgs=SPT phase from the rest. In certain limits, the topological phase transitions reside at the critical point of the formation of giant homological cycles in the bulk three-dimensional (3D) space-time lattice, as well as the bond percolation threshold of the boundary 2D space-time lattice when it is effectively decoupled from the bulk. Additionally, there are analogous mixed-phase properties at a certain region of the phase diagram, emerging from how we terminate the measurement-based procedure. Our findings pave an alternative pathway to study the physics of Higgs=SPT phases on quantum devices in the near future. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. A<sc>bstract</sc> In this study, we explore the real-time dynamics of the chiral magnetic effect (CME) at a finite temperature in the (1+1)-dimensional QED, the massive Schwinger model. By introducing a chiral chemical potentialμ5through a quench process, we drive the system out of equilibrium and analyze the induced vector currents and their evolution over time. The Hamiltonian is modified to include the time-dependent chiral chemical potential, thus allowing the investigation of the CME within a quantum computing framework. We employ the quantum imaginary time evolution (QITE) algorithm to study the thermal states, and utilize the Suzuki-Trotter decomposition for the real-time evolution. This study provides insights into the quantum simulation capabilities for modeling the CME and offers a pathway for studying chiral dynamics in low-dimensional quantum field theories. 
    more » « less