- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0003200000000000
- More
- Availability
-
41
- Author / Contributor
- Filter by Author / Creator
-
-
Bairaktarova, D. (3)
-
Ilbeigi, M. (3)
-
Ilbeigi, M (2)
-
Ehsani, R. (1)
-
GanjiRad, M (1)
-
Morteza, A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
Collinsand, W. (1)
-
Koskela, L (1)
-
Leathem, T. (1)
-
Murata, K (1)
-
Perrenoud, A. (eds.) (1)
-
Seppänen, O (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Seppänen, O; Koskela, L; Murata, K (Ed.)Generative Artificial Intelligence (AI), specifically Large Language Models (LLMs), has the potential to reshape construction management practices. These novel solutions can transform lean construction by enabling real-time data analysis, streamlined communication, and automated decision-making across project teams. They can facilitate enhanced collaboration by generating insights from vast construction data sets, improving workflow efficiency, and reducing waste. Additionally, LLMs can support predictive modeling, proactive risk management, and knowledge sharing, aligning with lean principles of maximizing value and minimizing inefficiencies. Given the recent advancements in generative AI, it is critical to systematically shape future research directions by building on the existing body of knowledge and addressing key knowledge gaps. The first step toward identifying knowledge gaps and uncovering critical areas that remain underexplored is to systematically analyze the existing body of knowledge. Therefore, this study conducts a scoping review to synthesize the extent, range, and nature of existing studies that have proposed novel solutions using generative AI and LLMs for various aspects of construction management. The outcomes of this systematic scoping review will help identify potential research directions for future studies in this domain.more » « lessFree, publicly-accessible full text available June 8, 2026
-
Ilbeigi, M (, ISEC)
-
Ilbeigi, M.; Bairaktarova, D. (, ASEE Annual Conference proceedings)
-
Ilbeigi, M.; Ehsani, R.; Bairaktarova, D. (, Proceedings of 59th Annual Associated Schools of Construction International Conference)Leathem, T.; Collinsand, W.; Perrenoud, A. (Ed.)
-
Ilbeigi, M.; Bairaktarova, D.; Morteza, A. (, ASEE Annual Conference proceedings)
An official website of the United States government

Full Text Available