skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Imai, Kosuke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Conjoint analysis is a popular experimental design used to measure multidimensional preferences. Many researchers focus on estimating the average marginal effects of each factor while averaging over the other factors. Although this allows for straightforward design-based estimation, the results critically depend on the ways in which factors interact with one another. An alternative model-based approach can compute various quantities of interest, but requires correct model specifications, a challenging task for conjoint analysis with many factors. We propose a new hypothesis testing approach based on the conditional randomization test (CRT) to answer the most fundamental question of conjoint analysis: Does a factor of interest matterin any waygiven the other factors? Although it only provides a formal test of these binary questions, the CRT is solely based on the randomization of factors, and hence requires no modeling assumption. This means that the CRT can provide a powerful and assumption-free statistical test by enabling the use of any test statistic, including those based on complex machine learning algorithms. We also show how to test commonly used regularity assumptions. Finally, we apply the proposed methodology to conjoint analysis of immigration preferences. An open-source software package is available for implementing the proposed methodology. The proposed methodology is implemented via an open-source software R packageCRTConjoint, available through the Comprehensive R Archive Networkhttps://cran.r-project.org/web/packages/CRTConjoint/index.html. 
    more » « less
  2. Abstract Video advertisements, either through television or the Internet, play an essential role in modern political campaigns. For over two decades, researchers have studied television video ads by analyzing the hand-coded data from the Wisconsin Advertising Project and its successor, the Wesleyan Media Project (WMP). Unfortunately, manually coding more than a hundred of variables, such as issue mentions, opponent appearance, and negativity, for many videos is a laborious and expensive process. We propose to automatically code campaign advertisement videos. Applying state-of-the-art machine learning methods, we extract various audio and image features from each video file. We show that our machine coding is comparable to human coding for many variables of the WMP datasets. Since many candidates make their advertisement videos available on the Internet, automated coding can dramatically improve the efficiency and scope of campaign advertisement research. Open-source software package is available for implementing the proposed methodology. 
    more » « less
  3. Abstract Many causal processes have spatial and temporal dimensions. Yet the classic causal inference framework is not directly applicable when the treatment and outcome variables are generated by spatio-temporal point processes. We extend the potential outcomes framework to these settings by formulating the treatment point process as a stochastic intervention. Our causal estimands include the expected number of outcome events in a specified area under a particular stochastic treatment assignment strategy. Our methodology allows for arbitrary patterns of spatial spillover and temporal carryover effects. Using martingale theory, we show that the proposed estimator is consistent and asymptotically normal as the number of time periods increases. We propose a sensitivity analysis for the possible existence of unmeasured confounders, and extend it to the Hájek estimator. Simulation studies are conducted to examine the estimators' finite sample performance. Finally, we illustrate the proposed methods by estimating the effects of American airstrikes on insurgent violence in Iraq from February 2007 to July 2008. Our analysis suggests that increasing the average number of daily airstrikes for up to 1 month may result in more insurgent attacks. We also find some evidence that airstrikes can displace attacks from Baghdad to new locations up to 400 km away. 
    more » « less
  4. Abstract Despite an increasing reliance on fully-automated algorithmic decision-making in our day-to-day lives, humans still make consequential decisions. While the existing literature focuses on the bias and fairness of algorithmic recommendations, an overlooked question is whether they improve human decisions. We develop a general statistical methodology for experimentally evaluating the causal impacts of algorithmic recommendations on human decisions. We also examine whether algorithmic recommendations improve the fairness of human decisions and derive the optimal decision rules under various settings. We apply the proposed methodology to the first-ever randomized controlled trial that evaluates the pretrial Public Safety Assessment in the United States criminal justice system. Our analysis of the preliminary data shows that providing the PSA to the judge has little overall impact on the judge’s decisions and subsequent arrestee behaviour. 
    more » « less
  5. aihuman is an R package which provides statistical methods for analyzing experimental evaluation of the causal impacts of algorithmic recommendations on human decisions developed by Imai, Jiang, Greiner, Halen, and Shin (2023) . The data used for this paper, and made available here, are interim, based on only half of the observations in the study and (for those observations) only half of the study follow-up period. We use them only to illustrate methods, not to draw substantive conclusions. 
    more » « less