skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Imoukhuede, P. I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract IntroductionAbnormal angiogenesis is central to vascular disease and cancer, and noninvasive biomarkers of vascular origin are needed to evaluate patients and therapies. Vascular endothelial growth factor receptors (VEGFRs) are often dysregulated in these diseases, making them promising biomarkers, but the need for an invasive biopsy has limited biomarker research on VEGFRs. Here, we pioneer a blood biopsy approach to quantify VEGFR plasma membrane localization on two circulating vascular proxies: circulating endothelial cells (cECs) and circulating progenitor cells (cPCs). MethodsUsing quantitative flow cytometry, we examined VEGFR expression on cECs and cPCs in four age-sex groups: peri/premenopausal females (aged < 50 years), menopausal/postmenopausal females (≥ 50 years), and younger and older males with the same age cut-off (50 years). ResultscECs in peri/premenopausal females consisted of two VEGFR populations: VEGFR-low (~ 55% of population: population medians ~ 3000 VEGFR1 and 3000 VEGFR2/cell) and VEGFR-high (~ 45%: 138,000 VEGFR1 and 39,000–236,000 VEGFR2/cell), while the menopausal/postmenopausal group only possessed the VEGFR-low cEC population; and 27% of cECs in males exhibited high plasma membrane VEGFR expression (206,000 VEGFR1 and 155,000 VEGFR2/cell). The absence of VEGFR-high cEC subpopulations in menopausal/postmenopausal females suggests that their high-VEGFR cECs are associated with menstruation and could be noninvasive proxies for studying the intersection of age-sex in angiogenesis. VEGFR1 plasma membrane localization in cPCs was detected only in menopausal/postmenopausal females, suggesting a menopause-specific regenerative mechanism. ConclusionsOverall, our quantitative, noninvasive approach targeting cECs and cPCs has provided the first insights into how sex and age influence VEGFR plasma membrane localization in vascular cells. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Angiogenesis, the formation of new blood vessels from pre-existing ones, is essential for both normal development and numerous pathologies. Systems biology has offered a unique approach to study angiogenesis by profiling tyrosine kinase receptors (RTKs) that regulate angiogenic processes and computationally modeling RTK signaling pathways. Historically, this systems biology approach has been applied on ex vivo angiogenesis assays, however, these assays are difficult to quantify and limited in their potential of temporal analysis. In this study, we adopted a simple two-dimensional angiogenesis assay comprised of human umbilical vein endothelial cells (HUVECs) and human dermal fibroblasts (HDFs) and examined temporal dynamics of a panel of six RTKs and cell heterogeneity up to 17 days. We observed ~2700 VEGFR1 (vascular endothelial growth factor receptor 1) per cell on 24-h-old cocultured HDF plasma membranes, which do not express VEGFR when cultured alone. We observed 4000–8100 VEGFR2 per cell on cocultured HUVEC plasma membranes throughout endothelial tube formation. We showed steady increase of platelet-derived growth factor receptors (PDGFRs) on cocultured HDF plasma membranes, and more interestingly, 1900–2900 PDGFRβ per plasma membrane were found on HUVECs within the first six hours of coculturing. These quantitative findings will offer us insights into molecular regulation during angiogenesis and help assess in vitro tube formation models and their physiological relevance. 
    more » « less
  5. Tyrosine kinase receptor (RTK) ligation and dimerization is a key mechanism for translating external cell stimuli into internal signaling events. This process is critical to several key cell and physiological processes, such as in angiogenesis and embryogenesis, among others. While modulating RTK activation is a promising therapeutic target, RTK signaling axes have been shown to involve complicated interactions between ligands and receptors both within and across different protein families. In angiogenesis, for example, several signaling protein families, including vascular endothelial growth factors and platelet-derived growth factors, exhibit significant cross-family interactions that can influence pathway activation. Computational approaches can provide key insight to detangle these signaling pathways but have been limited by the sparse knowledge of these cross-family interactions. Here, we present a framework for studying known and potential non-canonical interactions. We constructed generalized models of RTK ligation and dimerization for systems of two, three and four receptor types and different degrees of cross-family ligation. Across each model, we developed parameter-space maps that fully determine relative pathway activation for any set of ligand-receptor binding constants, ligand concentrations and receptor concentrations. Therefore, our generalized models serve as a powerful reference tool for predicting not only known ligand: Receptor axes but also how unknown interactions could alter signaling dimerization patterns. Accordingly, it will drive the exploration of cross-family interactions and help guide therapeutic developments across processes like cancer and cardiovascular diseases, which depend on RTK-mediated signaling. 
    more » « less