skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Imputato, Pasquale"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The confluence of advanced networking (5G/6G) and distributed cloud technologies (edge/fog computing) are rapidly transforming next-generation networks into highly distributed computation platforms, especially suited to host emerging resource-intensive and latency-sensitive services (e.g., smart transportation/city/factory, real-time computer vision, augmented reality). In this paper, we leverage the recently proposed Cloud Network Flow (CNF) modeling and optimization framework to design a novel two-timescale orchestration system for the joint control of communication and computation resources in cloud-integrated networks. The Long-Term Controller solves a properly constructed CNF optimization problem at a longer timescale that determines i) the end-to-end CNF routes (defining data paths and processing locations) for each service chain and ii) the associated allocation of communication and computation resources. The Short-Term Controller uses a local control policy to adjust the allocation of communication and computation resources based on queue state observations at a shorter timescale. Driven by the lack of proper simulation tools, we also develop new ns-3 features that allow modeling and simulation of cloud-integrated networks equipped with both communication and computation resources hosting arbitrary service chains. Finally, we integrate the proposed orchestration system into ns-3 to evaluate and analyze the dynamic orchestration of a set of representative service chains over a hierarchical cloud-integrated network. 
    more » « less