skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Inaganti, Rahul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aphids harbor nine common facultative symbionts, most mediating one or more ecological interactions.Wolbachia pipientis, well‐studied in other arthropods, remains poorly characterized in aphids. InPentalonia nigronervosaandP. caladii, global pests of banana,Wolbachiawas initially hypothesized to function as a co‐obligate nutritional symbiont alongside the traditional obligateBuchnera. However, genomic analyses failed to support this role. Our sampling across numerous populations revealed that more than 80% ofPentaloniaaphids carried an M‐supergroup strain ofWolbachia(wPni). The lack of fixation further supports a facultative status forWolbachia, while high infection frequencies in these entirely asexual aphids strongly suggestWolbachiaconfers net fitness benefits. Finding no correlation betweenWolbachiapresence and food plant use, we challengedWolbachia‐infected aphids with common natural enemies. Bioassays revealed thatWolbachiaconferred significant protection against a specialized fungal pathogen (Pandora neoaphidis) but not against generalist pathogens or parasitoids.Wolbachiaalso improved aphid fitness in the absence of enemy challenge. Thus, we identified the first clear benefits for aphid‐associatedWolbachiaand M‐supergroup strains specifically. Aphid‐Wolbachiasystems provide unique opportunities to merge key models of symbiosis to better understand infection dynamics and mechanisms underpinning symbiont‐mediated phenotypes. 
    more » « less