ResNet and, more recently, AlphaFold2 have demonstrated that deep neural networks can now predict a tertiary structure of a given protein amino-acid sequence with high accuracy. This seminal development will allow molecular biology researchers to advance various studies linking sequence, structure, and function. Many studies will undoubtedly focus on the impact of sequence mutations on stability, fold, and function. In this paper, we evaluate the ability of AlphaFold2 to predict accurate tertiary structures of wildtype and mutated sequences of protein molecules. We do so on a benchmark dataset in mutation modeling studies. Our empirical evaluation utilizes global and local structure analyses and yields several interesting observations. It shows, for instance, that AlphaFold2 performs similarly on wildtype and variant sequences. The placement of the main chain of a protein molecule is highly accurate. However, while AlphaFold2 reports similar confidence in its predictions over wildtype and variant sequences, its performance on placements of the side chains suffers in comparison to main-chain predictions. The analysis overall supports the premise that AlphaFold2-predicted structures can be utilized in further downstream tasks, but that further refinement of these structures may be necessary.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
02000010000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Shehu, Amarda (3)
-
Inan, Toki Tahmid (2)
-
Zaman, Ahmed Bin (2)
-
De Jong, Kenneth (1)
-
Inan, Toki (1)
-
Kabir, Anowarul (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
-
Zaman, Ahmed Bin ; Inan, Toki Tahmid ; Shehu, Amarda ( , IEEE Intl Conf on Bioinformatics and Biomedicine (BIBM))null (Ed.)
-
Zaman, Ahmed Bin ; Inan, Toki Tahmid ; De Jong, Kenneth ; Shehu, Amarda ( , IEEE/ACM Transactions on Computational Biology and Bioinformatics)We have long known that characterizing protein structures structure is key to understanding protein function. Computational approaches have largely addressed a narrow formulation of the problem, seeking to compute one native structure from an amino-acid sequence. Now AlphaFold2 promises to reveal a high-quality native structure for possibly many proteins. However, researchers over the years have argued for broadening our view to account for the multiplicity of native structures. We now know that many protein molecules switch between different structures to regulate interactions with molecular partners in the cell. Elucidating such structures de novo is exceptionally difficult, as it requires exploration of possibly a very large structure space in search of competing, near-optimal structures. Here we report on a novel stochastic optimization method capable of revealing very different structures for a given protein from knowledge of its amino-acid sequence. The method leverages evolutionary search techniques and adapts its exploration of the search space to balance between exploration and exploitation in the presence of a computational budget. In addition to demonstrating the utility of this method for identifying multiple native structures, we additionally provide a benchmark dataset for researchers to continue work on this problem.more » « less