skip to main content


Search for: All records

Creators/Authors contains: "Inchin, P. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Hunga‐Tonga Hunga‐Ha'apai volcano underwent a series of large‐magnitude eruptions that generated broad spectra of mechanical waves in the atmosphere. We investigate the spatial and temporal evolutions of fluctuations driven by atmospheric acoustic‐gravity waves (AGWs) and, in particular, the Lamb wave modes in high spatial resolution data sets measured over the Continental United States (CONUS), complemented with data over the Americas and the Pacific. Along with >800 barometer sites, tropospheric observations, and Total Electron Content data from >3,000 receivers, we report detections of volcano‐induced AGWs in mesopause and ionosphere‐thermosphere airglow imagery and Fabry‐Perot interferometry. We also report unique AGW signatures in the ionospheric D‐region, measured using Long‐Range Navigation pulsed low‐frequency transmitter signals. Although we observed fluctuations over a wide range of periods and speeds, we identify Lamb wave modes exhibiting 295–345 m s−1phase front velocities with correlated spatial variability of their amplitudes from the Earth's surface to the ionosphere. Results suggest that the Lamb wave modes, tracked by our ray‐tracing modeling results, were accompanied by deep fluctuation fields coupled throughout the atmosphere, and were all largely consistent in arrival times with the sequence of eruptions over 8 hr. The ray results also highlight the importance of winds in reducing wave amplitudes at CONUS midlatitudes. The ability to identify and interpret Lamb wave modes and accompanying fluctuations on the basis of arrival times and speeds, despite complexity in their spectra and modulations by the inhomogeneous atmosphere, suggests opportunities for analysis and modeling to understand their signals to constrain features of hazardous events.

     
    more » « less
  2. Abstract

    Near‐ and far‐field ionospheric responses to atmospheric acoustic and gravity waves (AGWs) generated by surface displacements during the 2015 Nepal7.8 Gorkha earthquake are simulated. Realistic surface displacements driven by the earthquake are calculated in three‐dimensional forward seismic waves propagation simulation, based on kinematic slip model. They are used to excite AGWs at ground level in the direct numerical simulation of three‐dimensional nonlinear compressible Navier‐Stokes equations with neutral atmosphere model, which is coupled with a two‐dimensional nonlinear multifluid electrodynamic ionospheric model. The importance of incorporating earthquake rupture kinematics for the simulation of realistic coseismic ionospheric disturbances (CIDs) is demonstrated and the possibility of describing faulting mechanisms and surface deformations based on ionospheric observations is discussed in details. Simulation results at the near‐epicentral region are comparable with total electron content (TEC) observations in periods (3.3 and6‐10 min for acoustic and gravity waves, respectively), propagation velocities (0.92 km/s for acoustic waves) and amplitudes (up to2 TECu). Simulated far‐field CIDs correspond to long‐period (4 mHz) Rayleigh waves (RWs), propagating with the same phase velocity of4 km/s. The characteristics of modeled RW‐related ionospheric disturbances differ from previously‐reported observations based on TEC data; possible reasons for these differences are discussed.

     
    more » « less
  3. Abstract

    Near‐epicentral mesopause airglow perturbations, driven by infrasonic acoustic waves (AWs) during a nighttime analog of the 2011 M9.1 Tohoku‐Oki earthquake, are simulated through the direct numerical computation of the 3D nonlinear Navier‐Stokes equations. Surface dynamics from a forward seismic wave propagation simulation, initialized with a kinematic slip model and performed with the SPECFEM3D_GLOBE model, are used to excite AWs into the atmosphere from ground level. Simulated mesopause airglow perturbations include steep oscillations and persistent nonlinear depletions up to 50%and 70%from the background state, respectively, for the hydroxyl OH(3,1) and oxygen O(1S) 557.7‐nm emissions. Results suggest that AWs excited near a large earthquake's epicenter may be strong enough to drive fluctuations in mesopause airglow, some which may persist after the AWs have passed, that could be readily detectable with ground‐ and/or satellite‐based imagers. Synthetic data demonstrate that future airglow observations may be used for the characterization of earthquake mechanisms and surface seismic waves propagation, potentially complementing tsunami early‐warning systems based on total electron content (TEC) observations.

     
    more » « less