Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chief-in-Editor: Jacob Fish Senior Advisor: J. Tinsley Oden Associate Editors: Somnath Ghosh, Arif Masud (Ed.)
Aspects of plastic anisotropy in damage accumulation are considered for a class of hexagonal crystals that deform by combined slip and twinning. Focus is placed on crystallographic aspects that are currently absent from constitutive formulations of ductile damage. To this end, three-dimensional finite-element calculations are carried out using a cubic unit cell containing a single void embedded in a crystal matrix. Plastic flow in the latter is described using crystal plasticity with parameters representative of single crystal pure magnesium. The effect of void oblateness is analyzed in some detail, as voids often form as blunted microcracks in Mg alloys. The analyses reveal two aspects peculiar to twinning-mediated void growth: (1) insensitivity of the effective stress-strain response to void oblateless and (2) a plastic auxetic effect. Both aspects manifest under certain circumstances. Some implications in terms of incorporating the uncovered crystallographic aspects in coupled plasticity-damage formulations of anisotropic materials are discussed.
-
null ; null ; Jordon J.B., Neelameggham N.R. (Ed.)The remarkable crystallographic plastic anisotropy of magnesium and its alloys reflects in its polycrystal response via texture. While texture-strength linkages have been studied, the role of textural variability on damage remains elusive. The challenge is to obtain relevant metrics that relate the net plastic anisotropy to macroscopic modes of damage. A possible approach is to adopt mechanistic descriptions of the damage. Motivated by the recent experimental and theoretical works in this direction, here we appeal to the Hill yield function to characterize the net plastic anisotropy of polycrystalline magnesium via the Hill plastic anisotropy tensor h. Metrics based on the components of h offer a way to predict damage as a possible damage predictor. Using the results from our recent extensive three-dimensional crystal plasticity simulations for a wide range of textures, we map the net plastic anisotropy onto the coefficients of h, separately for the tensile and compressive responses. Metrics based on these coefficients serve as indicators for the propensity of textured polycrystals to damage by: (i) porosity evolution, or (ii) shear instability. An attempt is made to understand the potential roles textural variability and crystallographic plastic anisotropy play in damage under different loading conditions.more » « less