skip to main content


Search for: All records

Creators/Authors contains: "Ingeman, Kurt E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Understanding coexistence within community modules such as intraguild predation (IGP), where an omnivore both preys on and competes with an intermediate consumer for a shared resource, has provided insight into the mechanisms that promote the persistence of complex food webs. Adaptive, predator-specific defense has been shown theoretically to enhance coexistence of IGP communities when employed by shared prey. Yet to date, all such theory has assumed that prey have an accurate perception of predation risk and appropriate antipredator responses, assumptions that may not be justified when considering a novel predator. We therefore consider the effects of an introduced predator on IGP coexistence, describing two invasion scenarios: suboptimal defense, whereby a similar invader elicits an ineffective antipredator response; and naïveté toward an unfamiliar invader, for which prey fail to accurately estimate predation risk. We examine predictions for native predator persistence across gradients of enrichment and defense costs. The model predicts that predator novelty can weaken the effect of adaptive defense, causing exclusion of native predators that would persist in the absence of novelty and inducing unstable dynamics in previously stable regions of parameter space. Coexistence is predicted to be more sensitive to the effects of suboptimal defense than to naïveté, and differentially leads to the exclusion of native predators in highly productive environments and when defense costs are low. Moderate novelty of the omnivore can increase resource density via a trophic cascade, while consumer novelty can either lead to omnivore exclusion or facilitate three-species coexistence by providing a subsidy to the otherwise excluded native omnivore. Our analyses suggest that models of adaptive defense are sensitive to assumptions regarding predator–prey eco-evolutionary experience and that predator novelty has significant implications for food web dynamics.

     
    more » « less
  2. Growing scientific awareness, strong regulations, and effective management have begun to fulfill the promise of recovery in the ocean. However, many efforts toward ocean recovery remain unsuccessful, in part because marine ecosystems and the human societies that depend upon them are constantly changing. Furthermore, recovery efforts are embedded in marine social-ecological systems where large-scale dynamics can inhibit recovery. We argue that the ways forward are to (i) rethink an inclusive definition of recovery that embraces a diversity of stakeholder perspectives about acceptable recovery goals and ecosystem outcomes; (ii) encourage research that enables anticipation of feasible recovery states and identifies pathways toward resilient ecosystems; and (iii) adopt policies that are sufficiently nimble to keep pace with rapid change and governance that works seamlessly from local to regional scales. Application of these principles can facilitate successful recoveries in a world where environmental conditions and social imperatives are constantly shifting. 
    more » « less