skip to main content


Search for: All records

Creators/Authors contains: "Ippolito, Jason"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Centrifugal spinning is a fiber spinning method capable of producing fibers in the nanoscale diameter range from a multitude of polymers, including polyacrylonitrile (PAN). With a traditional centrifugal spinner, fiber can be rapidly spun and collected on static collection posts. However, the use of posts inevitably forms a dense fiber “ring” that is incompatible with roll-to-roll manufacturing processes. In this work, factors that influence throughput and scalability of highly aligned centrifugally spun PAN fibers are explored. A custom centrifugal setup is used to vertically translate collected fibers during the spinning process to distribute them over a large surface area. In addition, factors that affect PAN fiber diameter during the spinning process are investigated, including spinneret to collector distance, rotational speed, and humidity. Resulting data demonstrates that these factors can be independently optimized to reliably produce quality PAN fiber in the nanoscale diameter range. Furthermore, the fiber mass collection rate can be increased without affecting sample quality when the vertical translation speed is increased. This work demonstrates the potential scalability of centrifugal spinning to quickly produce large amounts of highly aligned nanofiber in a cheap, efficient, and reliable manner, and also lends the ability to be collected in a roll-to-roll fashion.

     
    more » « less
  2. Abstract

    A parallel automated track collector is integrated with a rationally designed centrifugal spinning head to collect aligned polyacrylonitrile (PAN) nanofibers. Centrifugal spinning is an extremely promising nanofiber fabrication technology due to high production rates. However, continuous oriented fiber collection and processing presents challenges. Engineering solutions to these two challenges are explored in this study. A 3D‐printed head design, optimized through a computational fluid dynamics simulation approach, is utilized to limit unwanted air currents that disturb deposited nanofibers. An automated track collecting device has pulled deposited nanofibers away from the collecting area. This results in a continuous supply of individual aligned nanofibers as opposed to the densely packed nanofiber mesh ring that is deposited on conventional static post collectors. The automated track collector allows for simple integration of the postdraw processing step that is critical to polymer fiber manufacturing for enhancing macromolecular orientation and mechanical properties. Postdrawing has enhanced the mechanical properties of centrifugal spun PAN nanofibers, which have different crystalline properties compared with conventional PAN microfiber. These technological developments address key limitations of centrifugal spinning that can facilitate high production rate commercial fabrication of highly aligned, high‐performance polymer nanofibers.

     
    more » « less