- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chern, Albert (2)
-
Ishida, Sadashige (2)
-
Wojtan, Chris (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a formula for the signed area of a spherical polygon via prequantization. In contrast to the traditional formula based on the Gauss–Bonnet theorem that requires measuring angles, the new formula mimics Green’s theorem and is applicable to a wider range of degenerate spherical curves and polygons.more » « less
-
Ishida, Sadashige; Wojtan, Chris; Chern, Albert (, ACM Transactions on Graphics)This paper presents a new representation of curve dynamics, with applications to vortex filaments in fluid dynamics. Instead of representing these filaments with explicit curve geometry and Lagrangian equations of motion, we represent curves implicitly with a new co-dimensional 2 level set description. Our implicit representation admits several redundant mathematical degrees of freedom in both the configuration and the dynamics of the curves, which can be tailored specifically to improve numerical robustness, in contrast to naive approaches for implicit curve dynamics that suffer from overwhelming numerical stability problems. Furthermore, we note how these hidden degrees of freedom perfectly map to a Clebsch representation in fluid dynamics. Motivated by these observations, we introduce untwisted level set functions and non-swirling dynamics which successfully regularize sources of numerical instability, particularly in the twisting modes around curve filaments. A consequence is a novel simulation method which produces stable dynamics for large numbers of interacting vortex filaments and effortlessly handles topological changes and re-connection events.more » « less
An official website of the United States government
