skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Isikdogan, Leo F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. River deltas are complex, dynamic systems whose channel networks evolve in response to internal and external forcings. To capture these changes, methods to extract and analyze deltaic morphodynamics automatically using available remotely sensed imagery and experimental observations are needed. Here, we apply a promising method for the automatic extraction of channel presence called RivaMap, on both synthetic and experimental data sets, to investigate the changes experienced by the system in response to five changes in forcings. RivaMap is an automated method to extract nonbinarized channel locations from imagery based on a singularity index that combines the multiscale first and second derivatives of the image intensity to favor the identification of curvilinear features and suppress edges. We quantify how the channelization varies by computing the channelized response variance (CRV), which we define as the variance of each pixel's singularity index response through time. We find that increasing magnitudes of sediment inflow (Qs) and water inflow (Qw) result in corresponding increases in the maximum CRV. We find that increasing the ratio ofQstoQwresults in increased number of channelized areas. We see that adding cohesion to the exposed sediment surface of the experimental delta results in decreased magnitude and decreased number of channelized areas in the CRV. Finally, by observing changes to the CRV over time, we are able to quantify the timescale of internal channel reorganization events as the experimental delta evolves under constant forcings.

     
    more » « less