The biota of Sulawesi is noted for its high degree of endemism and for its substantial levels of in situ biological diversification. While the island’s long period of isolation and dynamic tectonic history have been implicated as drivers of the regional diversification, this has rarely been tested in the context of an explicit geological framework. Here, we provide a tectonically informed biogeographical framework that we use to explore the diversification history of Sulawesi flying lizards (the Draco lineatus Group), a radiation that is endemic to Sulawesi and its surrounding islands. We employ a framework for inferring cryptic speciation that involves phylogeographic and genetic clustering analyses as a means of identifying potential species followed by population demographic assessment of divergence-timing and rates of bi-directional migration as means of confirming lineage independence (and thus species status). Using this approach, phylogenetic and population genetic analyses of mitochondrial sequence data obtained for 613 samples, a 50-SNP data set for 370 samples, and a 1249-locus exon-capture data set for 106 samples indicate that the current taxonomy substantially understates the true number of Sulawesi Draco species, that both cryptic and arrested speciations have taken place, and that ancient hybridization confounds phylogenetic analyses that do notmore »
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract Rivers are known to act as biogeographic barriers in several strictly terrestrial taxa, while possibly serving as conduits of dispersal for freshwater-tolerant or -dependent species. However, the influence of river systems on genetic diversity depends on taxa-specific life history traits as well as other geographic factors. In amphibians, several studies have demonstrated that river systems have only minor influence on their divergence. Here, we assess the role of the paleodrainage systems of the Sunda region (with a focus on the island of Sumatra) in shaping the evolutionary history of two genera of frogs (
Sumaterana andWijayarana ) whose tadpoles are highly dependent on cascading stream habitats. Our phylogenetic results show no clear association between the genetic diversification patterns of both anurans genera and the existence of paleodrainage systems. Time-calibrated phylogenies and biogeographical models suggest that these frogs colonized Sumatra and diversified on the island before the occurrence of the Pleistocene drainage systems. Both genera demonstrate phylogenetic structuring along a north–south geographic axis, the temporal dynamics of which coincide with the geological chronology of proto Sumatran and -Javan volcanic islands. Our results also highlight the chronic underestimation of Sumatran biodiversity and call for more intense sampling efforts on the island. -
Abstract Comprehensive assessments of species’ extinction risks have documented the extinction crisis 1 and underpinned strategies for reducing those risks 2 . Global assessments reveal that, among tetrapods, 40.7% of amphibians, 25.4% of mammals and 13.6% of birds are threatened with extinction 3 . Because global assessments have been lacking, reptiles have been omitted from conservation-prioritization analyses that encompass other tetrapods 4–7 . Reptiles are unusually diverse in arid regions, suggesting that they may have different conservation needs 6 . Here we provide a comprehensive extinction-risk assessment of reptiles and show that at least 1,829 out of 10,196 species (21.1%) are threatened—confirming a previous extrapolation 8 and representing 15.6 billion years of phylogenetic diversity. Reptiles are threatened by the same major factors that threaten other tetrapods—agriculture, logging, urban development and invasive species—although the threat posed by climate change remains uncertain. Reptiles inhabiting forests, where these threats are strongest, are more threatened than those in arid habitats, contrary to our prediction. Birds, mammals and amphibians are unexpectedly good surrogates for the conservation of reptiles, although threatened reptiles with the smallest ranges tend to be isolated from other threatened tetrapods. Although some reptiles—including most species of crocodiles and turtles—require urgent, targeted action to prevent extinctions, efforts tomore »