Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The growing adoption of residential distributed energy resources (DERs) introduces more uncertain variability in power grid operation. More importantly, the residential DERs operate behind customers’ energy meters, and therefore, the utility cannot “directly” monitor them. Prior approaches to enable visibility into behind-the-meter (BTM) DERs either depend on estimations or require intrusive instrumentation on the customer side. To address the critical need for direct real-time monitoring of BTM DERs, in this paper, we propose a novel approach for utility-side direct real-time monitoring of residential BTM DERs. We utilize high-frequency (> 10kHz) conducted electromagnetic interference (EMI) from residential DERs’ grid-tied inverters to monitor their power generation. We discuss the working principle of our approach and present supporting results using three of-the-shelf grid-tied inverters.more » « lessFree, publicly-accessible full text available May 31, 2025
-
Freshwater scarcity is a global problem that requires collective efforts across all industry sectors. Nevertheless, a lack of access to operational water footprint data bars many applications from exploring optimization opportunities hidden within the temporal and spatial variations. To break this barrier into research in water sustainability, we build a dataset for operation direct water usage in the cooling systems and indirect water embedded in electricity generation. Our dataset consists of the hourly water efficiency of major U.S. cities and states from 2019 to 2023. We also offer cooling system models that capture the impact of weather on water efficiency. We present a preliminary analysis of our dataset and discuss three potential applications that can benefit from it. Our dataset is publicly available at Open Science Framework (OSF).more » « lessFree, publicly-accessible full text available May 31, 2025
-
Server-level power monitoring in data centers can significantly contribute to its efficient management. Nevertheless, due to the cost of a dedicated power meter for each server, most data center power management only focuses on UPS or cluster-level power monitoring. In this paper, we propose a low-cost novel power monitoring approach that uses only one sensor to extract power consumption information of all servers. We utilize the conducted electromagnetic interference (EMI) of server power supplies to measure their power consumption from non-intrusive single-point voltage measurements. We present a theoretical characterization of conducted EMI generation in server power supply and its propagation through the data center power network. Using a set of ten commercial-grade servers (six Dell PowerEdge and four Lenovo ThinkSystem), we demonstrate that our approach can estimate each server's power consumption with less than ~7% mean absolute error.more » « less
-
Significant power consumption is one of the major challenges for current and future high-performance computing (HPC) systems. All the while, HPC systems generally remain power underutilized, making them a great candidate for applying power oversubscription to reclaim unused capacity. However, an oversubscribed HPC system may occasionally get overloaded. In this paper, we propose MPR (Market-based Power Reduction), a scalable market-based approach where users actively participate in reducing the HPC system’s power consumption to mitigate overloads. In MPR, HPC users bid to supply, in exchange for incentives, the resource reduction required for handling the overloads. Using several real-world trace-based simulations, we extensively evaluate MPR and show that, by participating in MPR, users always receive more rewards than the cost of performance loss. At the same time, the HPC manager enjoys orders of magnitude more resource gain than her incentive payoff to the users. We also demonstrate the real-world effectiveness of MPR on a prototype system.more » « less
-
Server-level power monitoring in data centers can significantly contribute to its efficient management. Nevertheless, due to the cost of a dedicated power meter for each server, most data center power management only focuses on UPS or cluster-level power monitoring. In this paper, we propose a low-cost novel power monitoring approach that uses only one sensor to extract power consumption information of all servers. We utilize the conducted electromagnetic interference of server power supplies to measure its power consumption from non-intrusive single-point voltage measurement. Using a pair of commercial grade Dell PowerEdge servers, we demonstrate that our approach can estimate each server's power consumption with ~3% mean absolute percentage error.more » « less
-
null (Ed.)With the rapid development of the Internet of Things (IoT), computational workloads are gradually moving toward the internet edge for low latency. Due to significant workload fluctuations, edge data centers built in distributed locations suffer from resource underutilization and requires capacity underprovisioning to avoid wasting capital investment. The workload fluctuations, however, also make edge data centers more suitable for battery-assisted power management to counter the performance impact due to underprovisioning. In particular, the workload fluctuations allow the battery to be frequently recharged and made available for temporary capacity boosts. But, using batteries can overload the data center cooling system which is designed with a matching capacity of the power system. In this paper, we design a novel power management solution, DeepPM, that exploits the UPS battery and cold air inside the edge data center as energy storage to boost the performance. DeepPM uses deep reinforcement learning (DRL) to learn the data center thermal behavior online in a model-free manner and uses it on-the-fly to determine power allocation for optimum latency performance without overheating the data center. Our evaluation shows that DeepPM can improve latency performance by more than 50% compared to a power capping baseline while the server inlet temperature remains within safe operating limits (e.g., 32°C).more » « less