X-ray binaries (XRBs) consist of a compact object that accretes material from an orbiting secondary star. The most secure method we have for determining if the compact object is a black hole is to determine its mass: This is limited to bright objects and requires substantial time-intensive spectroscopic monitoring. With new X-ray sources being discovered with different X-ray observatories, developing efficient, robust means to classify compact objects becomes increasingly important. We compare three machine-learning classification methods (Bayesian Gaussian Processes (BGPs), K-Nearest Neighbors (KNN), Support Vector Machines) for determining whether the compact objects are neutron stars or black holes (BHs) in XRB systems. Each machine-learning method uses spatial patterns that exist between systems of the same type in 3D color–color–intensity diagrams. We used lightcurves extracted using 6 yr of data with MAXI/GSC for 44 representative sources. We find that all three methods are highly accurate in distinguishing pulsing from nonpulsing neutron stars (NPNS) with 95% of NPNS and 100% of pulsars accurately predicted. All three methods have high accuracy in distinguishing BHs from pulsars (92%) but continue to confuse BHs with a subclass of NPNS, called bursters, with KNN doing the best at only 50% accuracy for predicting BHs. Themore »
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
20
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Anthony, R. E. (1)
-
Aulie, A. (1)
-
Barker, A. (1)
-
Baumann, T. (1)
-
Brett, J. J. (1)
-
Brown, J. (1)
-
Christian, G. (1)
-
DeYoung, P. A. (1)
-
Finck, J. E. (1)
-
Frank, N. (1)
-
Garrett, S. (1)
-
Gopalan, G. (1)
-
Grovom, A. (1)
-
Hamann, A. (1)
-
Haring-Kaye, R. A. (1)
-
Hinnefeld, J. (1)
-
Howe, A. R. (1)
-
Islam, N. (1)
-
Islam, N. T. (1)
-
Jones, M. D. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Higgins, A. (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
:Chaosong Huang, Gang Lu (0)
-
A. Agarwal (0)
-
A. Beygelzimer (0)
-
A. E. Lischka (0)
-
A. E. Lischka, E. B. (0)
-
A. E. Lischka, E.B. Dyer (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Rogers, W. F. ; Garrett, S. ; Grovom, A. ; Anthony, R. E. ; Aulie, A. ; Barker, A. ; Baumann, T. ; Brett, J. J. ; Brown, J. ; Christian, G. ; et al ( , Physical Review C)