skip to main content

Search for: All records

Creators/Authors contains: "Ito, Kei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the first results from GALAXY CRUISE, a community (or citizen) science project based on data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The current paradigm of galaxy evolution suggests that galaxies grow hierarchically via mergers, but our observational understanding of the role of mergers is still limited. The data from HSC-SSP are ideally suited to improve our understanding with improved identifications of interacting galaxies thanks to the superb depth and image quality of HSC-SSP. We launched a community science project, GALAXY CRUISE, in 2019 and have collected over two million independent classifications of 20686 galaxies at z < 0.2. We first characterize the accuracy of the participants’ classifications and demonstrate that it surpasses previous studies based on shallower imaging data. We then investigate various aspects of interacting galaxies in detail. We show that there is a clear sign of enhanced activities of super-massive black holes and star formation in interacting galaxies compared to those in isolated galaxies. The enhancement seems particularly strong for galaxies undergoing violent mergers. We also show that the mass growth rate inferred from our results is roughly consistent with the observed evolution of the stellar mass function. The second season of GALAXY CRUISE is currently underway and we conclude with future prospects. We make the morphological classification catalog used in this paper publicly available at the GALAXY CRUISE website, which will be particularly useful for machine-learning applications.

    more » « less

    Satellite galaxies in the cluster environment are more likely to be quenched than galaxies in the general field. Recently, it has been reported that satellite galaxy quenching depends on the orientation relative to their central galaxies: satellites along the major axis of centrals are more likely to be quenched than those along the minor axis. In this paper, we report a detection of such anisotropic quenching up to z ∼ 1 based on a large optically selected cluster catalogue constructed from the Hyper Suprime-Cam Subaru Strategic Program. We calculate the quiescent satellite galaxy fraction as a function of orientation angle measured from the major axis of central galaxies and find that the quiescent fractions at 0.25 < z < 1 are reasonably fitted by sinusoidal functions with amplitudes of a few per cent. Anisotropy is clearer in inner regions (<r200m) of clusters and not significant in cluster outskirts (>r200m). We also confirm that the observed anisotropy cannot be explained by differences in local galaxy density or stellar mass distribution along the two axes. Quiescent fraction excesses between the two axes suggest that the quenching efficiency contributing to the anisotropy is almost independent of stellar mass, at least down to our stellar mass limit of $M_{*}=1\times 10^{10}\, {\rm M}_{\odot }$. Finally, we argue that the physical origins of the observed anisotropy should have shorter quenching time-scales than $\sim 1\, \mathrm{Gyr}$, like ram-pressure stripping, because, for anisotropic quenching to be observed, satellites must be quenched before their initial orientation angles are significantly changed.

    more » « less
  3. null (Ed.)
  4. null (Ed.)