This paper reports the development and detailed properties of about 13 metric tons of gadolinium sulfate octahydrate, $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$, which has been dissolved into Super-Kamiokande (SK) in the summer of 2020. We evaluate the impact of radioactive impurities in $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ on diffuse supernova neutrino background searches and solar neutrino observation and confirm the need to reduce radioactive and fluorescent impurities by about three orders of magnitude from commercially available high-purity $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$. In order to produce ultra-high-purity $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$, we have developed a method to remove impurities from gadolinium oxide, Gd2O3, consisting of acid dissolution, solvent extraction, and pH control processes, followed by a high-purity sulfation process. All of the produced ultra-high-purity $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ is assayed by inductively coupled plasma mass spectrometry and high-purity germanium detectors to evaluate its quality. Because of the long measurement time of high-purity germanium detectors, we have employed several underground laboratories for making parallel measurements including the Laboratorio Subterráneo de Canfranc in Spain, Boulby in the UK, and Kamioka in Japan. In the first half of production, the measured batch purities were found to be consistent with the specifications. However, in the latter half, the $\rm Gd_2(\rm SO_4)_3\cdot \rm 8H_2O$ contained one order of magnitude more 228Ra than the budgeted mean contamination. This was correlated with the corresponding characteristics of the raw material Gd2O3, in which an intrinsically large contamination was present. Based on their modest impact on SK physics, they were nevertheless introduced into the detector. To reduce 228Ra for the next stage of gadolinium loading to SK, a new process has been successfully established.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
We report a measurement of decay-time-dependent charge-parity () asymmetries indecays. We usepairs collected at theresonance with the Belle II detector at the SuperKEKB asymmetric-energy electron-positron collider. We reconstruct 220 signal events and extract the-violating parametersandfrom a fit to the distribution of the decay-time difference between the twomesons. The resulting confidence region is consistent with previous measurements inanddecays and with predictions based on the standard model.
Published by the American Physical Society 2024 Free, publicly-accessible full text available June 1, 2025 -
We search for the rare decayin asample of electron-positron collisions at theresonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanyingmeson inevents to suppress background from other decays of the signalcandidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanyingmeson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for thebranching fraction ofand, respectively. Combining the results, we determine the branching fraction of the decayto be, providing the first evidence for this decay at 3.5 standard deviations. The combined result is 2.7 standard deviations above the standard model expectation.
Published by the American Physical Society 2024 Free, publicly-accessible full text available June 1, 2025 -
A bstract We report results from a study of
B ± → DK ± decays followed byD decaying to theCP -even final stateK +K − and CP-odd final state , where$$ {K}_S^0{\pi}^0 $$ D is an admixture ofD 0and states. These decays are sensitive to the Cabibbo-Kobayashi-Maskawa unitarity-triangle angle$$ {\overline{D}}^0 $$ ϕ 3. The results are based on a combined analysis of the final data set of 772× 106 pairs collected by the Belle experiment and a data set of 198$$ B\overline{B} $$ × 106 pairs collected by the Belle II experiment, both in electron-positron collisions at the Υ(4$$ B\overline{B} $$ S ) resonance. We measure the CP asymmetries to be$$ \mathcal{A} $$ CP += (+12.5± 5.8± 1.4)% and$$ \mathcal{A} $$ CP− = (− 16.7± 5.7± 0.6)%, and the ratios of branching fractions to be$$ \mathcal{R} $$ CP += 1.164± 0.081± 0.036 and$$ \mathcal{R} $$ CP− = 1.151± 0.074± 0.019. The first contribution to the uncertainties is statistical, and the second is systematic. The asymmetries$$ \mathcal{A} $$ CP +and$$ \mathcal{A} $$ CP− have similar magnitudes and opposite signs; their difference corresponds to 3.5 standard deviations. From these values we calculate 68.3% confidence intervals of (8.5° <ϕ 3< 16.5° ) or (84.5° <ϕ 3< 95.5° ) or (163.3° <ϕ 3< 171.5° ) and 0.321 <r B < 0.465.Free, publicly-accessible full text available May 1, 2025