skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Itou, Hiromichi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The quasi-static problem describes a nonlinear porous body with a non-penetrating Barenblatt’s crack driven by the fracturing fluid, and its propagation is under investigation. By this, a bulk modulus of the porous body depends linearly on the density, the fracture faces allow contact with cohesion, and leak-off of the fluid into reservoir is accounted by the model. The mathematical problem consists in finding time-continuous functions of a displacement and a mean fluid pressure in the fracture, which satisfy the coupled system of the variational inequality and the fluid mass balance, which is controlled by the volume of fracking fluid pumped into the fracture. Well-posedness of the governing relations is proved rigorously by applying the method of Lagrange multipliers and using optimality conditions for the constrained minimization problem. As anillustrative example, a numerical benchmark problem of the fluid-driven fracture is presented in one dimension and computed by a Newton-type algorithm. 
    more » « less
    Free, publicly-accessible full text available July 15, 2026
  2. The response of a body described by a quasi-linear viscoelastic constitutive relation, whose material moduli depend on the mechanical pressure (that is one-third the trace of stress) is studied. The constitutive relation stems from a class of implicit relations between the histories of the stress and the relative deformation gradient. A-priori thresholding is enforced through the pressure that ensures that the displacement gradient remains small. The resulting mixed variational problem consists of an evolutionary equation with the Volterra convolution operator; this equation is studied for well-posedness within the theory of maximal monotone graphs. For isotropic extension or compression, a semi-analytic solution of the quasi-linear viscoelastic problem is constructed under stress control. The equations are studied numerically with respect to monotone loading both with and without thresholding. In the example, the thresholding procedure ensures that the solution does not blow-up in finite time. 
    more » « less