skip to main content

Search for: All records

Creators/Authors contains: "Ivanov, Mikhail M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We explore an interacting dark matter (IDM) model that allows for a fraction of dark matter (DM) to undergo velocity-independent scattering with baryons. In this scenario, structure on small scales is suppressed relative to the cold DM scenario. Using the effective field theory of large-scale structure, we perform the first systematic analysis of BOSS full-shape galaxy clustering data for the IDM scenario, and we find that this model ameliorates theS8tension between large-scale structure and Planck data. Adding theS8prior from the Dark Energy Survey (DES) to our analysis further leads to a mild ∼3σpreference for a nonvanishing DM–baryon scattering cross section, assuming ∼10% of DM is interacting and has a particle mass of 1 MeV. This result produces a modest ∼20% suppression of the linear power atk≲ 1hMpc−1, consistent with other small-scale structure observations. Similar scale-dependent power suppression was previously shown to have the potential to resolveS8tension between cosmological data sets. The validity of the specific IDM model explored here will be critically tested with upcoming galaxy surveys at the interaction level needed to alleviate theS8tension.

    more » « less
    Free, publicly-accessible full text available August 29, 2024
  2. A bstract Perturbations of massless fields in the Kerr-Newman black hole background enjoy a (“Love”) SL(2 , ℝ) symmetry in the suitably defined near zone approximation. We present a detailed study of this symmetry and show how the intricate behavior of black hole responses in four and higher dimensions can be understood from the SL(2 , ℝ) representation theory. In particular, static perturbations of four-dimensional black holes belong to highest weight SL(2 , ℝ) representations. It is this highest weight properety that forces the static Love numbers to vanish. We find that the Love symmetry is tightly connected to the enhanced isometries of extremal black holes. This relation is simplest for extremal charged spherically symmetric (Reissner-Nordström) solutions, where the Love symmetry exactly reduces to the isometry of the near horizon AdS 2 throat. For rotating (Kerr-Newman) black holes one is lead to consider an infinite-dimensional SL(2 , ℝ) ⋉ $$ \hat{\textrm{U}}{(1)}_{\mathcal{V}} $$ U ̂ 1 V extension of the Love symmetry. It contains three physically distinct subalgebras: the Love algebra, the Starobinsky near zone algebra, and the near horizon algebra that becomes the Bardeen-Horowitz isometry in the extremal limit. We also discuss other aspects of the Love symmetry, such as the geometric meaning of its generators for spin weighted fields, connection to the no-hair theorems, non-renormalization of Love numbers, its relation to (non-extremal) Kerr/CFT correspondence and prospects of its existence in modified theories of gravity. 
    more » « less
  3. null (Ed.)
    A bstract It was shown recently that the static tidal response coefficients, called Love numbers, vanish identically for Kerr black holes in four dimensions. In this work, we confirm this result and extend it to the case of spin-0 and spin-1 perturbations. We compute the static response of Kerr black holes to scalar, electromagnetic, and gravitational fields at all orders in black hole spin. We use the unambiguous and gauge-invariant definition of Love numbers and their spin-0 and spin-1 analogs as Wilson coefficients of the point particle effective field theory. This definition also allows one to clearly distinguish between conservative and dissipative response contributions. We demonstrate that the behavior of Kerr black hole responses to spin-0 and spin-1 fields is very similar to that of the spin-2 perturbations. In particular, static conservative responses vanish identically for spinning black holes. This implies that vanishing Love numbers are a generic property of black holes in four-dimensional general relativity. We also show that the dissipative part of the response does not vanish even for static perturbations due to frame-dragging. 
    more » « less
  4. null (Ed.)