skip to main content

Search for: All records

Creators/Authors contains: "Ivanov, V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Siilicon is the most scalable optoelectronic material but has suffered from its inability to generate directly and efficiently classical or quantum light on-chip. Scaling and integration are the most fundamental challenges facing quantum science and technology. We report an all-silicon quantum light source based on a single atomic emissive center embedded in a silicon-based nanophotonic cavity. We observe a more than 30-fold enhancement of luminescence, a near-unity atom-cavity coupling efficiency, and an 8-fold acceleration of the emission from the all-silicon quantum emissive center. Our work opens immediate avenues for large-scale integrated cavity quantum electrodynamics and quantum light-matter interfaces with applications in quantum communication and networking, sensing, imaging, and computing.

    more » « less
    Free, publicly-accessible full text available June 7, 2024
  2. null (Ed.)
  3. null (Ed.)
    The transverse voltage generated by a temperature gradient in a perpendicularly applied magnetic field, termed the Nernst effect, has promise for thermoelectric applications and for probing electronic structure. In magnetic materials, an anomalous Nernst effect (ANE) is possible in a zero magnetic field. We report a colossal ANE in the ferromagnetic metal UCo 0.8 Ru 0.2 Al, reaching 23 microvolts per kelvin. Uranium’s 5 f electrons provide strong electronic correlations that lead to narrow bands, a known route to producing a large thermoelectric response. In addition, uranium’s strong spin-orbit coupling produces an intrinsic transverse response in this material due to the Berry curvature associated with the relativistic electronic structure. Theoretical calculations show that in UCo 0.8 Ru 0.2 Al at least 148 Weyl nodes, and two nodal lines, exist within 60 millielectron volt of the Fermi level. This work demonstrates that magnetic actinide materials can host strong Nernst and Hall responses due to their combined correlated and topological nature. 
    more » « less
  4. ABSTRACT A search of the first Data Release of the VISTA Variables in the Via Lactea (VVV) Survey discovered the exceptionally red transient VVV-WIT-01 (H − Ks = 5.2). It peaked before March 2010, then faded by ∼9.5 mag over the following 2 yr. The 1.6–22 μm spectral energy distribution in March 2010 was well fit by a highly obscured blackbody with T ∼ 1000 K and $A_{K_s} \sim 6.6$ mag. The source is projected against the Infrared Dark Cloud (IRDC) SDC G331.062−0.294. The chance projection probability is small for any single event (p ≈ 0.01–0.02), which suggests a physical association, e.g. a collision between low mass protostars. However, blackbody emission at T ∼ 1000 K is common in classical novae (especially CO novae) at the infrared peak in the light curve due to condensation of dust ∼30–60 d after the explosion. Radio follow-up with the Australia Telescope Compact Array detected a fading continuum source with properties consistent with a classical nova but probably inconsistent with colliding protostars. Considering all VVV transients that could have been projected against a catalogued IRDC raises the probability of a chance association to p = 0.13–0.24. After weighing several options, it appears likely that VVV-WIT-01 was a classical nova event located behind an IRDC. 
    more » « less
  5. Free, publicly-accessible full text available August 1, 2024
  6. Free, publicly-accessible full text available July 1, 2024
  7. A<sc>bstract</sc>

    The production of strange hadrons ($$ {\textrm{K}}_{\textrm{S}}^0 $$KS0, Λ, Ξ±, and Ω±), baryon-to-meson ratios (Λ/$$ {\textrm{K}}_{\textrm{S}}^0 $$KS0, Ξ/$$ {\textrm{K}}_{\textrm{S}}^0 $$KS0, and Ω/$$ {\textrm{K}}_{\textrm{S}}^0 $$KS0), and baryon-to-baryon ratios (Ξ/Λ, Ω/Λ, and Ω/Ξ) associated with jets and the underlying event were measured as a function of transverse momentum (pT) in pp collisions at$$ \sqrt{s} $$s= 13 TeV and p Pb collisions at$$ \sqrt{s_{\textrm{NN}}} $$sNN= 5.02 TeV with the ALICE detector at the LHC. The inclusive production of the same particle species and the corresponding ratios are also reported. The production of multi-strange hadrons, Ξ±and Ω±, and their associated particle ratios in jets and in the underlying event are measured for the first time. In both pp and p–Pb collisions, the baryon-to-meson and baryon-to-baryon yield ratios measured in jets differ from the inclusive particle production for low and intermediate hadronpT(0.6–6 GeV/c). Ratios measured in the underlying event are in turn similar to those measured for inclusive particle production. In pp collisions, the particle production in jets is compared with Pythia8 predictions with three colour-reconnection implementation modes. None of them fully reproduces the data in the measured hadronpTregion. The maximum deviation is observed for Ξ±and Ω±which reaches a factor of about six. The event multiplicity dependence is further investigated in p−Pb collisions. In contrast to what is observed in the underlying event, there is no significant event-multiplicity dependence for particle production in jets. The presented measurements provide novel constraints on hadronisation and its Monte Carlo description. In particular, they demonstrate that the fragmentation of jets alone is insufficient to describe the strange and multi-strange particle production in hadronic collisions at LHC energies.

    more » « less
    Free, publicly-accessible full text available July 1, 2024