skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Iwan, Seth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report on a novel TaNbZrHfTi-based high entropy alloy (HEA) which demonstrates distinctive dual-phase superconductivity. The HEA was synthesized under high pressures and high temperatures starting from a ball milled mixture of elemental metals in a large-volume Paris–Edinburgh cell with P ≈ 6 GPa and T = 2300 K. The synthesized HEA is a phase mixture of BCC (NbTa)0.45(ZrHfTi)0.55 with Tc1 = 6 K and FCC (NbTa)0.04(ZrHfTi)0.96 with Tc2 = 3.75 K. The measured magnetic field parameters for the HEA are lower critical field, Hc1(0) = 31 mT, and a relatively high upper critical field, Hc2(0) = 4.92 T. This dual-phase system is further characterized by the presence of a second magnetization peak, or the fishtail effect, observed in the virgin magnetization curves. This phenomenon, which does not distort the field-dependent magnetization hysteresis loops, suggests intricate pinning mechanisms that could be potentially tuned for optimized performance. The manifestation of these unique features in HEA superconductivity reinforces phase-dependent superconductivity and opens new avenues in the exploration of novel superconducting materials.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  2. A boron-rich boron–carbide material (B4+δC) was synthesized by spark plasma sintering of a ball-milled mixture of high-purity boron powder and graphitic carbon at a pressure of 7 MPa and a temperature of 1930 °C. This high-pressure, high-temperature synthesized material was recovered and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, Vickers hardness measurements, and thermal oxidation studies. The X-ray diffraction studies revealed a single-phase rhombohedral structure (space group R-3m) with lattice parameters in hexagonal representation as a = 5.609 ± 0.007 Å and c = 12.082 ± 0.02 Å. The experimental lattice parameters result in a value of δ = 0.55, or the composition of the synthesized compound as B4.55C. The high-resolution scans of boron binding energy reveal the existence of a B-C bond at 188.5 eV. Raman spectroscopy reveals the existence of a 386 cm−1 vibrational mode representative of C-B-B linear chain formation due to excess boron in the lattice. The measured Vickers microhardness at a load of 200 gf shows a high hardness value of 33.8 ± 2.3 GPa. Thermal gravimetric studies on B4.55C were conducted at a temperature of 1300 °C in a compressed dry air environment, and its behavior is compared to other high-temperature ceramic materials such as high-entropy transition metal boride. The high neutron absorption cross section, high melting point, high mechanical strength, and thermal oxidation resistance make this material ideal for applications in extreme environments.

     
    more » « less
  3. Metal oxide thermal reduction, enabled by microwave-induced plasma, was used to synthesize high entropy borides (HEBs). This approach capitalized on the ability of a microwave (MW) plasma source to efficiently transfer thermal energy to drive chemical reactions in an argon-rich plasma. A predominantly single-phase hexagonal AlB2-type structural characteristic of HEBs was obtained by boro/carbothermal reduction as well as by borothermal reduction. We compare the microstructural, mechanical, and oxidation resistance properties using the two different thermal reduction approaches (i.e., with and without carbon as a reducing agent). The plasma-annealed HEB (Hf0.2, Zr0.2, Ti0.2, Ta0.2, Mo0.2)B2 made via boro/carbothermal reduction resulted in a higher measured hardness (38 ± 4 GPa) compared to the same HEB made via borothermal reduction (28 ± 3 GPa). These hardness values were consistent with the theoretical value of ~33 GPa obtained by first-principles simulations using special quasi-random structures. Sample cross-sections were evaluated to examine the effects of the plasma on structural, compositional, and mechanical homogeneity throughout the HEB thickness. MW-plasma-produced HEBs synthesized with carbon exhibit a reduced porosity, higher density, and higher average hardness when compared to HEBs made without carbon. 
    more » « less