Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2025
-
This article builds on recent work of the first three authors where a notion of congruence modules in higher codimension is introduced. The main results are a criterion for detecting regularity of local rings in terms of congruence modules, and a more refined version of a result tracking the change of congruence modules under deformation. Number theoretic applications include the construction of canonical lines in certain Galois cohomology groups arising from adjoint motives of Hilbert modular forms.more » « less
-
Abstract This paper extends the results of Boij, Eisenbud, Erman, Schreyer and Söderberg on the structure of Betti cones of finitely generated graded modules and finite free complexes over polynomial rings, to all finitely generated graded rings admitting linear Noether normalizations. The key new input is the existence of lim Ulrich sequences of graded modules over such rings.more » « less
-
Duality properties are studied for a Gorenstein algebra that is finite and projective over its center. Using the homotopy category of injective modules, it is proved that there is a local duality theorem for the subcategory of acyclic complexes of such an algebra, akin to the local duality theorems of Grothendieck and Serre in the context of commutative algebra and algebraic geometry. A key ingredient is the Nakayama functor on the bounded derived category of a Gorenstein algebra and its extension to the full homotopy category of injective modules.more » « less
-
Abstract Diamond proved a numerical criterion for modules over local rings to be free modules over complete intersection rings. We formulate a refinement of these results using the notion of Wiles defect. A key step in the proof is a formula that expresses the Wiles defect of a module in terms of the Wiles defect of the underlying ring.more » « less