skip to main content


Search for: All records

Creators/Authors contains: "Iyyer, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Recent work on Question Answering (QA) and Conversational QA (ConvQA) emphasizes the role of retrieval: a system first retrieves evidence from a large collection and then extracts answers. This open-retrieval setting typically assumes that each question is answerable by a single span of text within a particular passage (a span answer). The supervision signal is thus derived from whether or not the system can recover an exact match of this ground-truth answer span from the retrieved passages. This method is referred to as span-match weak supervision. However, information-seeking conversations are challenging for this span-match method since long answers, especially freeform answers, are not necessarily strict spans of any passage. Therefore, we introduce a learned weak supervision approach that can identify a paraphrased span of the known answer in a passage. Our experiments on QuAC and CoQA datasets show that although a span-match weak supervisor can handle conversations with span answers, it is not sufficient for freeform answers generated by people. We further demonstrate that our method is more flexible since it can handle both span answers and freeform answers. In particular, our method outperforms the span-match method on conversations with freeform answers, and it can be more powerful when combined with the span-match method. We also conduct in-depth analyses to show more insights on open-retrieval ConvQA under a weak supervision setting. 
    more » « less