skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Jacob, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Consequential STEM experiences in informal settings can address issues of equity by fully engaging historically marginalized high school students in complex socio-scientific issues. However, inclusive and effective programs are in high demand, and there is little research on what specific aspects, context, and timeframes are most important when scaling these experiences. Using a mixed method approach, this study demonstrates that students make significant gains, in the short and long term, through in-person and remote informal programs ranging between 22-h and 320-h. Progress across STEM learning constructs is attributed to authentic research experiences, students’ connections to STEM professionals, direct hands-on participation in projects, and group work. Relative to formal education settings, research-based informal STEM programs can be implemented with minimal resources, can maintain effectiveness while scaling, and work towards addressing the societal challenge of improving STEM learning and outcomes for high school students from historically marginalized communities.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract

    Subaerial biofilms (SAB) are intricate microbial communities living on terrestrial surfaces, of interest in a variety of contexts including cultural heritage preservation, microbial ecology, biogeochemical cycling, and biotechnology. Here we propose a mathematical model aimed at better understanding the interplay between cyanobacteria and heterotrophic bacteria, common microbial SAB constituents, and their mutual dependence on local environmental conditions. SABs are modeled as thin mixed biofilm-liquid water layers sitting on stone. A system of ordinary differential equations regulates the dynamics of key SAB components: cyanobacteria, heterotrophs, polysaccharides and decayed biomass, as well as cellular levels of organic carbon, nitrogen and energy. These components are interconnected through a network of energetically dominant metabolic pathways, modeled with limitation terms reflecting the impact of biotic and abiotic factors. Daily cylces of temperature, humidity, and light intensity are considered as input model variables that regulate microbial activity by influencing water availability and metabolic kinetics. Relevant physico-chemical processes, including pH regulation, further contribute to a description of the SAB ecology. Numerical simulations explore the dynamics of SABs in a real-world context, revealing distinct daily activity periods shaped by water activity and light availability, as well as longer time scale survivability conditions. Results also suggest that heterotrophs could play a substantial role in decomposing non-volatile carbon compounds and regulating pH, thus influencing the overall composition and stability of the biofilm.

     
    more » « less
  3. Abstract

    This work details the partially observable markov decision process (POMDP) and the point-based value iteration (PBVI) algorithms for use in multisensor systems, specifically, a sensor system capable of heart rate (HR) estimation through wearable photoplethysmography (PPG) and accelerometer signals. PPG sensors are highly susceptible to motion artifact (MA); however, current methods focus more on overall MA filters, rather than action specific filtering. An end-to-end embedded human activity recognition (HAR) System is developed to represent the observation uncertainty, and two action specific PPG MA reducing filters are proposed as actions. PBVI allows optimal action decision-making based on an uncertain observation, effectively balancing correct action choice and sensor system cost. Two central systems are proposed to accompany these algorithms, one for unlimited observation access and one for limited observation access. Through simulation, it can be shown that the limited observation system performs optimally when sensor cost is negligible, while limited observation access performs optimally when a negative reward for sensor use is considered. The final general framework for POMDP and PBVI was applied to a specific HR estimation example. This work can be expanded on and used as a basis for future work on similar multisensor system.

     
    more » « less
    Free, publicly-accessible full text available March 1, 2025
  4. Force Field X (FFX) is an open-source software package for atomic resolution modeling of genetic variants and organic crystals that leverages advanced potential energy functions and experimental data. FFX currently consists of nine modular packages with novel algorithms that include global optimization via a many-body expansion, acid–base chemistry using polarizable constant-pH molecular dynamics, estimation of free energy differences, generalized Kirkwood implicit solvent models, and many more. Applications of FFX focus on the use and development of a crystal structure prediction pipeline, biomolecular structure refinement against experimental datasets, and estimation of the thermodynamic effects of genetic variants on both proteins and nucleic acids. The use of Parallel Java and OpenMM combines to offer shared memory, message passing, and graphics processing unit parallelization for high performance simulations. Overall, the FFX platform serves as a computational microscope to study systems ranging from organic crystals to solvated biomolecular systems. 
    more » « less
    Free, publicly-accessible full text available July 7, 2025
  5. This works reports on novel polyimine vitrimers from a bio-based and fully aromatic scaffold. The dynamic networks possess high-performance thermal stability and charring behavior with facile thermomechanical and viscoelastic tunability.

     
    more » « less
  6. Abstract

    Ultra-thin films of low damping ferromagnetic insulators with perpendicular magnetic anisotropy have been identified as critical to advancing spin-based electronics by significantly reducing the threshold for current-induced magnetization switching while enabling new types of hybrid structures or devices. Here, we have developed a new class of ultra-thin spinel structure Li0.5Al1.0Fe1.5O4(LAFO) films on MgGa2O4(MGO) substrates with: 1) perpendicular magnetic anisotropy; 2) low magnetic damping and 3) the absence of degraded or magnetic dead layers. These films have been integrated with epitaxial Pt spin source layers to demonstrate record low magnetization switching currents and high spin-orbit torque efficiencies. These LAFO films on MGO thus combine all of the desirable properties of ferromagnetic insulators with perpendicular magnetic anisotropy, opening new possibilities for spin based electronics.

     
    more » « less
  7. A radio frequency (RF) reflectometry technique is presented to measure device capacitances using a probe station. This technique is used to characterize micro-electromechanical system (MEMS) variable capacitor devices that can be connected to create pull-up and pull-down networks used in digital gates for reversible computing. Adiabatic reversible computing is a promising approach to energy-efficient computing that can dramatically reduce heat dissipation by switching circuits at speeds below their RC time constants, introducing a trade-off between energy and speed. The variable capacitors in this study will be measured using single port RF reflectometry achieved with a custom-made RF probe. The RF probe consists of a micromanipulator with an on-board matching network and is calibrated by measuring a capacitive bank that shows a clearly visible frequency shift with the increase in capacitance. The RF probe worked well when measuring static capacitors with no parasitic resistance; however, the frequency shift is masked when measuring the MEMS variable capacitors due to their high in-series parasitic resistance (around 80 kΩ). Therefore, RF reflectometry has the potential to measure MEMS variable capacitors in the range of 0–30 fF when not masked by a high in-series parasitic resistance, creating a fast and versatile method for characterizing variable capacitors that can be used in energy-efficient computing.

     
    more » « less