skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jacobs, Jamaal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Habitat loss and fragmentation have independent impacts on biodiversity; thus, field studies are needed to distinguish their impacts. Moreover, species with different locomotion rates respond differently to fragmentation, complicating direct comparisons of the effects of habitat loss and fragmentation across differing taxa and landscapes. To overcome these challenges, we combined mechanistic mathematical modeling and laboratory experiments to compare how species with different locomotion rates were affected by low (∼80% intact) and high (∼30% intact) levels of habitat loss. In our laboratory experiment, we usedCaenorhabditis elegansstrains with different locomotion rates and subjected them to the different levels of habitat loss and fragmentation by placingEscherichia coli(C. elegansfood) over different proportions of the Petri dish. We developed a partial differential equation model that incorporated spatial and biological phenomena to predict the impacts of habitat arrangement on populations. Only species with low rates of locomotion declined significantly in abundance as fragmentation increased in areas with low (p = 0.0270) and high (p = 0.0243) levels of habitat loss. Despite that species with high locomotion rates changed little in abundance regardless of the spatial arrangement of resources, they had the lowest abundance and growth rates in all environments because the negative effect of fragmentation created a mismatch between the population distribution and the resource distribution. Our findings shed new light on incorporating the role of locomotion in determining the effects of habitat fragmentation. 
    more » « less
    Free, publicly-accessible full text available December 19, 2025