Macroalgae form important coastal ecosystems and are considered to be highly productive, yet individual macrophyte carbon uptake rates are poorly documented and methodologies for
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
00000020000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Jacobs, Julian M. (2)
-
Himes, Lucian (1)
-
La Valle, Florybeth F. (1)
-
La Valle, Florybeth Flores (1)
-
Nelson, Craig E. (1)
-
Thomas, Florence I. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
in situ assessments of productivity are not well developed. In this study, we employ a13C enrichment method in benthic chambers to calculate carbon uptake rates and assessδ 13C signatures of a large stock of nearshore benthic macroalgae varying in taxa and morphology in Southern California. Our objectives are to 1) identify the variability of carbon uptake and inorganic carbon use among individuals of the same species or morphology, and 2) establish accurate and accessible carbon uptake procedures for coastal benthic primary producers. We found no significant relationship between the observed ranges of environmental factors such as nutrient concentrations, PAR, temperature, conductivity, and productivity rates, suggesting that unique physiological complexions underpin the high variability of carbon uptake andδ 13C in studied macrophyte samples. We consider three reasons our experimental carbon uptake rates are 3–4 orders of magnitude lower than existing literature, which reports carbon uptake in the same units despite using different methods: 1) underrepresentation ofP max, 2) incomplete carbon fractionation corrections, and 3) reduced hydrodynamics within the benthic chambers. -
La Valle, Florybeth Flores ; Jacobs, Julian M. ; Thomas, Florence I. ; Nelson, Craig E. ( , Frontiers in Marine Science)Submarine groundwater discharge (SGD) in high volcanic islands can be an important source of freshwater and nutrients to coral reefs. High inorganic nutrient content is generally thought to augment primary production in coastal systems but when this is delivered via a freshwater vector as is the case with SGD in this study, the effects on productivity are unclear. In the current literature, there is limited evidence for a direct association between SGD and primary productivity of reefs. To elucidate the response of primary productivity to SGD, we conducted spatially and temporally explicit in situ benthic chamber experiments on a reef flat along a gradient of SGD. We found significant quadratic relationships between C-uptake and SGD for both phytoplankton and the most abundant macroalga, Gracilaria salicornia , with uptake maxima at SGD-derived salinities of ~21−22 (24.5−26.6 μmol NO 3 -L −1 ). These results suggest a physiological tradeoff between salinity tolerance and nutrient availability for reef primary producers. Spatially explicit modeling of reefs with SGD and without SGD indicate reef-scale G. salicornia and phytoplankton C-uptake decreased by 82% and 36% in the absence of SGD, respectively. Thus, nutrient-rich and low salinity SGD has significant effects on algal C-uptake in reef systems.more » « less