skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Jacquey, Antoine_B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Microseismicity associated with fluid pressurization in the subsurface occurs during fluid injection but can also be triggered after injection shut‐in. Understanding the extent and duration of the post‐injection microseismicity is critical to limit the risk of fluid‐induced seismicity and insure the safe utilization of the subsurface. Using theoretical and numerical techniques, we investigated how aseismic slip on a fault plane evolves and stops after a fluid pressurization event. We found that the locking mechanisms controlling the arrest of aseismic slip highly depend on the initial fault stress criticality and the pressurization duration. The absolute arrest time of fault aseismic slip after injection shut‐in is proportional to the pressurization duration and increases significantly with the initial fault stress criticality. Given that microseismicity can be triggered by aseismic slip, these results provide insights into the mechanics controlling the arrest of microseismicity after fluid pressurization as a milestone toward induced seismicity mitigation strategies.

     
    more » « less