skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jadhav, S_K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Low-lying states in$$^{54}$$ 54 Cr have been investigated via the$$\alpha $$ α -transfer reaction$$^{50}$$ 50 Ti($$^{7}$$ 7 Li,t) at a bombarding energy of 20 MeV. The exclusive$$\alpha $$ α -transfer channel is separated from other reaction channels through the appropriate energy gate on the complementary particle, triton. Levels of$$^{54}$$ 54 Cr populated exclusively by the$$\alpha $$ α -transfer process could be identified up to$$\approx $$ 5 MeV excitation energy and angular momentum up to$$(8)^{+}$$ ( 8 ) + , by identifying the corresponding known$$\gamma $$ γ -rays. These include multiple low-lying non-yrast 2$$^+$$ + and 4$$^+$$ + states, which would otherwise be unfavorable via fusion evaporation reactions. The feeding-subtracted$$\gamma $$ γ -ray yields have been extracted to estimate the population of various excited states through the transfer process. The measured integrated transfer cross sections for all the observed yrast and non-yrast states are compared with Coupled Channels calculations usingfrescoto extract the$$\alpha $$ α +$$^{50}$$ 50 Ti core spectroscopic factors. For the yrast states, a higher$$\alpha $$ α +core overlap is seen for the$$2^+$$ 2 + and$$4^+$$ 4 + states, while it is seen to be less favorable for the$$6^+$$ 6 + and$$(8)^+$$ ( 8 ) + states when$$\alpha $$ α -transfer is considered to occur predominantly as a direct one-step process to the$$^{50}$$ 50 Ti core ground state. The yrast$$2^+$$ 2 + , and$$4^+$$ 4 + states are predominantly populated by single-step transfer, while for the states with spin$$\ge $$ 5, the possibility of core excitation followed by$$\alpha $$ α -transfer shows a larger$$\alpha $$ α -core overlap. For the non-yrast$$0^+$$ 0 + ,$$2^+$$ 2 + , and$$4^+$$ 4 + states, single-step transfer shows moderate to small$$\alpha $$ α -core overlap. No higher spin non-yrast states are observed. 
    more » « less