skip to main content

Search for: All records

Creators/Authors contains: "Jaffel, K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract A search is presented for a heavy W′ boson resonance decaying to a B or T vector-like quark and a t or a b quark, respectively. The analysis is performed using proton-proton collisions collected with the CMS detector at the LHC. The data correspond to an integrated luminosity of 138 fb − 1 at a center-of-mass energy of 13 TeV. Both decay channels result in a signature with a t quark, a Higgs or Z boson, and a b quark, each produced with a significant Lorentz boost. The all-hadronic decays of the Higgs or Z boson and of the t quark are selected using jet substructure techniques to reduce standard model backgrounds, resulting in a distinct three-jet W′ boson decay signature. No significant deviation in data with respect to the standard model background prediction is observed. Upper limits are set at 95% confidence level on the product of the W′ boson cross section and the final state branching fraction. A W′ boson with a mass below 3.1 TeV is excluded, given the benchmark model assumption of democratic branching fractions. In addition, limits are set based on generalizations of these assumptions. These are the most sensitive limits to datemore »for this final state.« less
    Free, publicly-accessible full text available September 1, 2023
  2. Free, publicly-accessible full text available August 1, 2023
  3. Free, publicly-accessible full text available July 1, 2023
  4. Free, publicly-accessible full text available June 1, 2023
  5. A bstract Results are presented from a search for charged-lepton flavor violating (CLFV) interactions in top quark production and decay in pp collisions at a center-of-mass energy of 13 TeV. The events are required to contain one oppositely charged electron-muon pair in the final state, along with at least one jet identified as originating from a bottom quark. The data correspond to an integrated luminosity of 138 fb − 1 , collected by the CMS experiment at the LHC. This analysis includes both the production (q → e μ t) and decay (t → e μ q) modes of the top quark through CLFV interactions, with q referring to a u or c quark. These interactions are parametrized using an effective field theory approach. With no significant excess over the standard model expectation, the results are interpreted in terms of vector-, scalar-, and tensor-like CLFV four-fermion effective interactions. Finally, observed exclusion limits are set at 95% confidence levels on the respective branching fractions of a top quark to an e μ pair and an up (charm) quark of 0 . 13 × 10 − 6 (1 . 31 × 10 − 6 ), 0 . 07 × 10 − 6more »(0 . 89 × 10 − 6 ), and 0 . 25 × 10 − 6 (2 . 59 × 10 − 6 ) for vector, scalar, and tensor CLFV interactions, respectively.« less
    Free, publicly-accessible full text available June 1, 2023
  6. Free, publicly-accessible full text available May 1, 2023
  7. A bstract A search for long-lived particles decaying into muon pairs is performed using proton-proton collisions at a center-of-mass energy of 13 TeV, collected by the CMS experiment at the LHC in 2017 and 2018, corresponding to an integrated luminosity of 101 fb − 1 . The data sets used in this search were collected with a dedicated dimuon trigger stream with low transverse momentum thresholds, recorded at high rate by retaining a reduced amount of information, in order to explore otherwise inaccessible phase space at low dimuon mass and nonzero displacement from the primary interaction vertex. No significant excess of events beyond the standard model expectation is found. Upper limits on branching fractions at 95% confidence level are set on a wide range of mass and lifetime hypotheses in beyond the standard model frameworks with the Higgs boson decaying into a pair of long-lived dark photons, or with a long-lived scalar resonance arising from a decay of a b hadron. The limits are the most stringent to date for substantial regions of the parameter space. These results can be also used to constrain models of displaced dimuons that are not explicitly considered in this paper.
    Free, publicly-accessible full text available April 1, 2023
  8. A bstract The top quark pair production cross section is measured in proton-proton collisions at a center-of-mass energy of 5.02 TeV. The data were collected in a special LHC low-energy and low-intensity run in 2017, and correspond to an integrated luminosity of 302 pb − 1 . The measurement is performed using events with one electron and one muon of opposite charge, and at least two jets. The measured cross section is 60 . 7 ± 5 . 0 (stat) ± 2 . 8 (syst) ± 1 . 1 (lumi) pb. A combination with the result in the single lepton + jets channel, based on data collected in 2015 at the same center-of-mass energy and corresponding to an integrated luminosity of 27.4 pb − 1 , is then performed. The resulting measured value is 63 . 0 ± 4 . 1 (stat) ± 3 . 0 (syst+lumi) pb, in agreement with the standard model prediction of $$ {66.8}_{-3.1}^{+2.9} $$ 66.8 − 3.1 + 2.9 pb.
    Free, publicly-accessible full text available April 1, 2023
  9. A bstract A search for a heavy resonance decaying into a top quark and a W boson in proton-proton collisions at $$ \sqrt{s} $$ s = 13 TeV is presented. The data analyzed were recorded with the CMS detector at the LHC and correspond to an integrated luminosity of 138 fb − 1 . The top quark is reconstructed as a single jet and the W boson, from its decay into an electron or muon and the corresponding neutrino. A top quark tagging technique based on jet clustering with a variable distance parameter and simultaneous jet grooming is used to identify jets from the collimated top quark decay. The results are interpreted in the context of two benchmark models, where the heavy resonance is either an excited bottom quark b ∗ or a vector-like quark B. A statistical combination with an earlier search by the CMS Collaboration in the all-hadronic final state is performed to place upper cross section limits on these two models. The new analysis extends the lower range of resonance mass probed from 1.4 down to 0.7 TeV. For left-handed, right-handed, and vector-like couplings, b ∗ masses up to 3.0, 3.0, and 3.2 TeV are excluded atmore »95% confidence level, respectively. The observed upper limits represent the most stringent constraints on the b ∗ model to date.« less
    Free, publicly-accessible full text available April 1, 2023
  10. A bstract Inclusive and differential cross sections of single top quark production in association with a Z boson are measured in proton-proton collisions at a center-of-mass energy of 13 TeV with a data sample corresponding to an integrated luminosity of 138 fb − 1 recorded by the CMS experiment. Events are selected based on the presence of three leptons, electrons or muons, associated with leptonic Z boson and top quark decays. The measurement yields an inclusive cross section of $$ {87.9}_{-7.3}^{+7.5}{\left(\mathrm{stat}\right)}_{-6.0}^{+7.3}\left(\mathrm{syst}\right) $$ 87.9 − 7.3 + 7.5 stat − 6.0 + 7.3 syst fb for a dilepton invariant mass greater than 30 GeV, in agreement with standard model (SM) calculations and represents the most precise determination to date. The ratio between the cross sections for the top quark and the top antiquark production in association with a Z boson is measured as $$ {2.37}_{-0.42}^{+0.56}{\left(\mathrm{stat}\right)}_{-0.13}^{+0.27}\left(\mathrm{syst}\right) $$ 2.37 − 0.42 + 0.56 stat − 0.13 + 0.27 syst . Differential measurements at parton and particle levels are performed for the first time. Several kinematic observables are considered to study the modeling of the process. Results are compared to theoretical predictions with different assumptions on the source of the initial-state b quark andmore »found to be in agreement, within the uncertainties. Additionally, the spin asymmetry, which is sensitive to the top quark polarization, is determined from the differential distribution of the polarization angle at parton level to be 0 . 54 ± 0 . 16 (stat) ± 0 . 06 (syst), in agreement with SM predictions.« less
    Free, publicly-accessible full text available February 1, 2023