Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2023
-
Free, publicly-accessible full text available May 1, 2023
-
Free, publicly-accessible full text available May 1, 2023
-
Graph synthesis is a long-standing research problem. Many deep neural networks that learn about latent characteristics of graphs and generate fake graphs have been proposed. However, in many cases their scalability is too high to be used to synthesize large graphs. Recently, one work proposed an interesting scalable idea to learn and generate random walks that can be merged into a graph. Due to its difficulty, however, the random walk-based graph synthesis failed to show state-of-the-art performance in many cases. We present an improved random walk-based method by using negative random walks. In our experiments with 6 datasets and 8 baseline methods, our method shows the best performance in almost all cases. We achieve both high scalability and generation quality.
-
Security patches in open source software (OSS) not only provide security fixes to identified vulnerabilities, but also make the vulnerable code public to the attackers. Therefore, armored attackers may misuse this information to launch N-day attacks on unpatched OSS versions. The best practice for preventing this type of N-day attacks is to keep upgrading the software to the latest version in no time. However, due to the concerns on reputation and easy software development management, software vendors may choose to secretly patch their vulnerabilities in a new version without reporting them to CVE or even providing any explicit description in their change logs. When those secretly patched vulnerabilities are being identified by armored attackers, they can be turned into powerful “0-day” attacks, which can be exploited to compromise not only unpatched version of the same software, but also similar types of OSS (e.g., SSL libraries) that may contain the same vulnerability due to code clone or similar design/implementation logic. Therefore, it is critical to identify secret security patches and downgrade the risk of those “0-day” attacks to at least “n-day” attacks. In this paper, we develop a defense system and implement a toolset to automatically identify secret security patches inmore »