skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Background Team leadership during medical emergencies like cardiac arrest resuscitation is cognitively demanding, especially for trainees. These cognitive processes remain poorly characterized due to measurement challenges. Using virtual reality simulation, this study aimed to elucidate and compare communication and cognitive processes-such as decision-making, cognitive load, perceived pitfalls, and strategies-between expert and novice code team leaders to inform strategies for accelerating proficiency development. Methods A simulation-based mixed methods approach was utilized within a single large academic medical center, involving twelve standardized virtual reality cardiac arrest simulations. These 10- to 15-minutes simulation sessions were performed by seven experts and five novices. Following the simulations, a cognitive task analysis was conducted using a cued-recall protocol to identify the challenges, decision-making processes, and cognitive load experienced across the seven stages of each simulation. Results The analysis revealed 250 unique cognitive processes. In terms of reasoning patterns, experts used inductive reasoning, while novices tended to use deductive reasoning, considering treatments before assessments. Experts also demonstrated earlier consideration of potential reversible causes of cardiac arrest. Regarding team communication, experts reported more critical communications, with no shared subthemes between groups. Experts identified more teamwork pitfalls, and suggested more strategies compared to novices. For cognitive load, experts reported lower median cognitive load (53) compared to novices (80) across all stages, with the exception of the initial presentation phase. Conclusions The identified patterns of expert performance — superior teamwork skills, inductive clinical reasoning, and distributed cognitive strategiesn — can inform training programs aimed at accelerating expertise development. 
    more » « less
    Free, publicly-accessible full text available December 31, 2026
  2. Linear representation learning is widely studied due to its conceptual simplicity and empirical utility in tasks such as compression, classification, and feature extraction. Given a set of points $$[\x_1, \x_2, \ldots, \x_n] = \X \in \R^{d \times n}$$ and a vector $$\y \in \R^d$$, the goal is to find coefficients $$\w \in \R^n$$ so that $$\X \w \approx \y$$, subject to some desired structure on $$\w$$. In this work we seek $$\w$$ that forms a local reconstruction of $$\y$$ by solving a regularized least squares regression problem. We obtain local solutions through a locality function that promotes the use of columns of $$\X$$ that are close to $$\y$$ when used as a regularization term. We prove that, for all levels of regularization and under a mild condition that the columns of $$\X$$ have a unique Delaunay triangulation, the optimal coefficients' number of non-zero entries is upper bounded by $d+1$, thereby providing local sparse solutions when $$d \ll n$$. Under the same condition we also show that for any $$\y$$ contained in the convex hull of $$\X$$ there exists a regime of regularization parameter such that the optimal coefficients are supported on the vertices of the Delaunay simplex containing $$\y$$. This provides an interpretation of the sparsity as having structure obtained implicitly from the Delaunay triangulation of $$\X$$. We demonstrate that our locality regularized problem can be solved in comparable time to other methods that identify the containing Delaunay simplex. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  3. Free, publicly-accessible full text available December 1, 2026
  4. Free, publicly-accessible full text available December 31, 2026
  5. Free, publicly-accessible full text available December 15, 2026
  6. Free, publicly-accessible full text available November 1, 2026
  7. Abstract Purpose of ReviewThe purpose of this review is to share insights from recognized experts in 3D biopriniting on the recent advances in these technologies discussed during a recent workshop held in conjunction with the 2024 ISS National Laboratory Research and Development Conference (ISSRDC). We seek to answer how microgravity can be used as a disruptor to make further advances not possible through conventional means. Recent FindingsThis review will cover current efforts underway to use microgravity for 3D bioprinting. For instance multi-levitation biofabrication technology funded under the EU PULSE project is currently being used to create cardiovascular 3D in vitro models to better mimic cardiac and vascular physiology compared to organoids. These types of models could be expanded to other organ systems and disease models to use the environment of microgravity to unlock new signaling pathways to cure disease. SummaryThe major takeaway from this review is that microgravity will unlock new opportunities for 3D bioprinting that were simply not possible using conventional means. We provide forward looking answers to what microgravity will inspire from advanced biomaterials to new disease models to even creating a knowledge hub for 3D bioprinting to launch new platforms at record speeds. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  8. Free, publicly-accessible full text available December 1, 2026
  9. Variability in space use among conspecifics can emerge from foraging strategies that track available resources, especially in riverscapes that promote high synchrony between prey pulses and consumers. Projected changes in riverscape hydrological regimes due to water management and climate change accentuate the need to understand the natural variability in animal space use and its implications for population dynamics and ecosystem function. Here, we used long-term tracking of Common Snook (Centropomus undecimalis) movement and trophic dynamics in the Shark River, Everglades National Park from 2012 to 2023 to test how specialization in the space use of individuals (i.e., Eadj) changes seasonally, how it is influenced by yearly hydrological conditions, and its relationship to the between individual trophic niche. Snook exhibited seasonal variability in space use, with maximum individual specialization (high dissimilarity) in the wet season. The degree of individual specialization increased over the years in association with greater marsh flooding duration, which produced important subsidies. Also, there were threshold responses of individual space use specialization as a function of floodplain conditions. Greater specialization in space use results in a decrease in snook trophic niche size. These results show how hydrological regimes in riverscapes influence individual specialization of resource use (both space and prey), providing insight into how forecasted hydroclimatic scenarios may shape habitat selection processes and the trophic dynamics of mobile consumers. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  10. Free, publicly-accessible full text available December 1, 2026