skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jameson, Emily E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In many lentic ecosystems, hydroperiod, or the duration of inundation, controls animal community composition and biomass. Although hydroperiod-imposed differences in wetland animal communities could cause differences in animal-driven nutrient supply, hydroperiod has not been considered as a template for investigating patterns of animal-driven nutrient cycling. Here, we use nutrient excretion rates (NH4-N and SRP) and biomasses of pelagic and benthic invertebrates and salamanders and nutrient uptake rates in a simulation model to estimate animal-driven nutrient supply and pond-level demand along a hydroperiod gradient of 12 subalpine ponds in the U.S. Rocky Mountains that are vulnerable to climate change. We found that animal biomass increased with hydroperiod duration and biomass predicted animal-driven supply contributions among hydroperiod classifications (temporary-permanent). Consequently, community-wide supply was greatest in permanent ponds. Animal-driven N supply exceeded demand in permanent and semi-permanent ponds, whereas P supply equaled demand in both. Conversely, temporary ponds had large deficits in N and P supply due to lower community biomass and hydroperiod-induced constraints on dominant suppliers (oligochaetes and chironomids). The distribution of taxon-specific supply also differed among hydroperiods, with supply dominated by a few taxa in permanent ponds and supply more evenly distributed among temporary pond taxa. The absence or lower biomass of dominant suppliers in temporary ponds creates nutrient deficits and possible limitation of productivity. Thus, as climate warming causes hydroperiods to become increasingly temporary and indirectly prompts biomass declines and compositional shifts, animal-driven nutrient supply will decrease and strong nutrient limitation may arise due to loss of animal-driven supply. 
    more » « less