- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Jamil, Md Hasibul (1)
-
Kosar, Tevfik (1)
-
Nine, MD_S_Q Zulkar (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Large-scale deep learning workloads increasingly suffer from I/O bottlenecks as datasets grow beyond local storage capacities and GPU compute outpaces network and disk latencies. While recent systems optimize data-loading time, they overlook the energy cost of I/O—a critical factor at large scale. We introduce EMLIO, an Efficient Machine Learning I/O service that jointly minimizes end-to-end data-loading latency (𝑇) and I/O energy consumption (𝐸) across variable-latency networked storage. EMLIO deploys a lightweight data-serving daemon on storage nodes that serializes and batches raw samples, streams them over TCP with out-of-order prefetching, and integrates seamlessly with GPU-accelerated (NVIDIA DALI) pre-processing on the client side. In exhaustive evaluations over local disk, LAN (0.05 ms & 10 ms round trip time (RTT)), and WAN (30 ms RTT) environments, EMLIO delivers on average up to 8.6X faster I/O and 10.9X lower energy use compared to state-of-the-art loaders, while maintaining constant performance and energy profiles irrespective of network distance. EMLIO’s service-based architecture offers a scalable blueprint for energy-aware I/O in next-generation AI clouds.more » « lessFree, publicly-accessible full text available November 15, 2026
An official website of the United States government
