skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Jana, Gourhari"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many ligands commonly used to prepare nanoparticle catalysts with precise nanoscale features contain nitrogen (e.g., oleylamine); here, it is found that the use of nitrogen‐containing ligands during the synthesis of metal oxide nanoparticle catalysts substantially impacts product analysis during photocatalytic studies. These experimental results are confirmed via hybrid Density Functional Theory (DFT) computations of the materials’ electronic properties to evaluate their viability as photocatalysts for nitrogen reduction. This nitrogen ligand contamination, and subsequent interference in photocatalytic studies is avoidable through the careful design of synthetic pathways that exclude nitrogen‐containing constituents. This result highlights the urgent need for careful evaluation of catalyst synthesis protocols, as contamination by nitrogen‐containing ligands may go unnoticed since the presence of nitrogen is often not detected or probed. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026