skip to main content


Search for: All records

Creators/Authors contains: "Janeja, Vandana P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 29, 2025
  2. Free, publicly-accessible full text available October 29, 2025
  3. Free, publicly-accessible full text available July 7, 2025
  4. Free, publicly-accessible full text available March 7, 2025
  5. The melting of ice sheets significantly contributes to sea level rise, highlighting the crucial need to comprehend the structure of ice for climate benefits. The stratigraphy of ice sheets revealed through ice layer radargrams gives us a window into historical depth-age correlations and accumulation rates. Harnessing this knowledge is not only crucial for interpreting both past and present ice dynamics, especially concerning the Greenland ice sheet, but also for making informed decisions to mitigate the impacts of climate change. Ice layer tracing is prevalently conducted using manual or semi-automatic approaches, requiring significant time and expertise. This study aims to address the need for efficient and precise tracing methods in a two-step process. This is achieved by utilizing an unsupervised annotation method (i.e., ARESELP) to train deep learning models, thereby reducing the need for extensive and time-consuming manual annotations. Four prominent deep learning-based segmentation techniques, namely U-Net, U-Net+VGG19, U-Net+Inception, and Attention U-Net, are benchmarked. Additionally, various thresholding methods such as binary, Otsu, and CLAHE have been explored to achieve optimal enhancement for the true label annotation images. Our preliminary experiments indicate that the combination of attention U-Net with specific processing techniques yields the best performance in terms of the binary IoU metric.

     
    more » « less
    Free, publicly-accessible full text available January 22, 2025
  6. We present an innovative approach to auto-annotate Expert Defined Linguistic Features (EDLFs) as subsequences in audio time series to improve audio deepfake discernment. In our prior work, these linguistic features – namely pitch, pause, breath, consonant release bursts, and overall audio quality, labeled by experts on the entire audio signal – have been shown to improve detection of audio deepfakes with AI algorithms. We now expand our approach to pilot a way to auto annotate subsequences in the time series that correspond to each EDLF. We developed an ensemble of discords, i.e. anomalies in time series, detected using matrix profiles across multiple discord lengths to identify multiple types of EDLFs. Working closely with linguistic experts, we evaluated where discords overlapped with EDLFs in the audio signal data. Our ensemble method to detect discords across multiple discord lengths achieves much higher accuracy than using individual discord lengths to detect EDLFs. With this approach and domain validation we establish the feasibility of using time series subsequences to capture EDLFs to supplement annotation by domain experts, for improved audio deepfake detection. 
    more » « less
    Free, publicly-accessible full text available January 22, 2025
  7. A deepfake is content or material that is synthetically generated or manipulated using artificial intelligence (AI) methods, to be passed off as real and can include audio, video, image, and text synthesis. The key difference between manual editing and deepfakes is that deepfakes are AI generated or AI manipulated and closely resemble authentic artifacts. In some cases, deepfakes can be fabricated using AI-generated content in its entirety. Deepfakes have started to have a major impact on society with more generation mechanisms emerging everyday. This article makes a contribution in understanding the landscape of deepfakes, and their detection and generation methods. We evaluate various categories of deepfakes especially in audio. The purpose of this survey is to provide readers with a deeper understanding of (1) different deepfake categories; (2) how they could be created and detected; (3) more specifically, how audio deepfakes are created and detected in more detail, which is the main focus of this paper. We found that generative adversarial networks (GANs), convolutional neural networks (CNNs), and deep neural networks (DNNs) are common ways of creating and detecting deepfakes. In our evaluation of over 150 methods, we found that the majority of the focus is on video deepfakes, and, in particular, the generation of video deepfakes. We found that for text deepfakes, there are more generation methods but very few robust methods for detection, including fake news detection, which has become a controversial area of research because of the potential heavy overlaps with human generation of fake content. Our study reveals a clear need to research audio deepfakes and particularly detection of audio deepfakes. This survey has been conducted with a different perspective, compared to existing survey papers that mostly focus on just video and image deepfakes. This survey mainly focuses on audio deepfakes that are overlooked in most of the existing surveys. This article's most important contribution is to critically analyze and provide a unique source of audio deepfake research, mostly ranging from 2016 to 2021. To the best of our knowledge, this is the first survey focusing on audio deepfakes generation and detection in English. 
    more » « less
  8. null (Ed.)
    Blockchain is the technology used by developers of cryptocurrencies, like Bitcoin, to enable exchange of financial “coins” between participants in the absence of a trusted third party to ensure the transaction, such as is typically done by governments. Blockchain has evolved to become a generic approach to store and process data in a highly decentralized and secure way. In this article, we review blockchain concepts and use cases, and discuss the challenges in using them from a governmental viewpoint. We begin with reviewing the categories of blockchains, the underlying mechanisms, and why blockchains can achieve their security goals. We then review existing known governmental use cases by regions. To show both technical and deployment details of blockchain adoption, we study a few representative use cases in the domains of healthcare and energy infrastructures. Finally, the review of both technical details and use cases helps us summarize the adoption and technical challenges of blockchains. 
    more » « less