skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jang, Yoon-Jung"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High-density polyethylene (HDPE) is a widely used commercial plastic due to its excellent mechanical properties, chemical resistance, and water vapor barrier properties. However, less than 10% of HDPE is mechanically recycled, and the chemical recycling of HDPE is challenging due to the inherent strength of the carbon–carbon backbone bonds. Here, we report chemically recyclable linear and branched HDPE with sparse backbone ester groups synthesized from the transesterification of telechelic polyethylene macromonomers. Stoichiometrically self-balanced telechelic polyethylenes underwent transesterification polymerization to produce the PE-ester samples with high number-average molar masses of up to 111 kg/mol. Moreover, the transesterification polymerization of the telechelic polyethylenes and the multifunctional diethyl 5-(hydroxymethyl)isophthalate generated branched PE-esters. Thermal and mechanical properties of the PE-esters were comparable to those of commercial HDPE and tunable through control of the ester content in the backbone. In addition, branched PE-esters showed higher levels of melt strain hardening compared with linear versions. The PE-ester was depolymerized into telechelic macromonomers through straightforward methanolysis, and the resulting macromonomers could be effectively repolymerized to generate a high molar mass recycled PE-ester sample. This is a new and promising method for synthesizing and recycling high-molar-mass linear and branched PE-esters, which are competitive with HDPE and have easily tailorable properties. 
    more » « less
  2. The performance of sustainable polymers can be modified and enhanced by incorporating functional groups in the backbone of the polymer chain that increases intermolecular interactions, thus impacting the thermal properties of the material. However, in-depth studies on the role of intermolecular interactions on the crystallization of these polymers are still needed. This work aims to ascertain whether incorporating functional groups able to induce intermolecular interactions can be used as a suitable systematic strategy to modify the polymer thermal properties and crystallization kinetics. Thus, amide and additional ester groups have been incorporated into aliphatic polyesters (PEs). The impact of intermolecular interactions on the melting and crystallization behavior, crystallization kinetics, and crystalline structure has been determined. Functional groups that form strong intermolecular interactions increase both melting and crystallization temperatures but retard the crystallization kinetics. Selecting appropriate functional groups allows tuning the crystallinity degree, which can potentially improve the mechanical properties and degradability in semicrystalline materials. The results demonstrate that it is possible to tune the thermal transitions and the crystallization kinetics of PEs independently by varying their chemical structure. 
    more » « less
  3. Sustainable gas barrier materials, such as polyglycolide, poly(l-lactide), and poly(ethylene 2,5-furandicarboxylate) are important alternatives to traditional plastics used for packaging where low gas permeability is beneficial. However, high degrees of crystallinity in these materials can lead to undesirably low material toughness. We report poly(ester–amide)s derived from glycolide and diamines exhibiting both high toughness and desirable gas barrier properties. These sustainable poly(ester–amide)s were synthesized from glycolide-derived diamidodiols and diacids. To understand the structure–property relationships of the poly(ester–amide)s, polymers with different numbers of methylene groups were compared with respect to thermal, mechanical, and gas barrier properties. As the number of methylene groups between ester groups increased in the even-numbered series, the melting temperature decreased and oxygen permeability increased. We also found that these polymers are readily degradable under neutral, acidic, and basic hydrolytic conditions. These high-performance poly(ester–amide)s are promising sustainable alternatives to conventional gas barrier materials. 
    more » « less
  4. The origin of melt memory effects associated with semicrystalline polymers and the physical parameters involved in this process have been widely studied in the literature. However, a comprehensive understanding of the role of intermolecular interactions on melt memory is still being developed. For this purpose, we have considered aliphatic polyesters and we have incorporated amide and additional ester groups. Inserting these additional functional groups, the strength of the intermolecular interactions increases widening the melt memory effect. Not only the presence of the functional groups but also the position of these groups in the repeating unit plays a role in the melt memory effect as it impacts the strength of the intermolecular interactions in the crystals. The study of the effect of intermolecular interactions has been extended to successive self-nucleation and annealing thermal fractionation experiments to explore for the first time the role of intermolecular forces on the fractionation capacity of linear polymers. We demonstrated that intermolecular interactions act as intrinsic defects interrupting the crystallizable chain length, thus facilitating thermal fractionation. Overall, this work sheds light on the role of intermolecular interactions on the crystallization behavior of a series of aliphatic polyesters. 
    more » « less