Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Sexual reproduction is the primary mode of reproduction in eukaryotes, but some organisms have evolved deviations from classical sex and switched to asexuality. These asexual lineages have sometimes been viewed as evolutionary dead ends, but recent research has revealed their importance in many areas of general biology. Our review explores the understudied, yet important mechanisms by which sperm‐dependent asexuals that produce non‐recombined gametes but rely on their fertilization, can have a significant impact on the evolution of coexisting sexual species and ecosystems. These impacts are concentrated around three major fields. Firstly, sperm‐dependent asexuals can potentially impact the gene pool of coexisting sexual species by either restricting their population sizes or by providing bridges for interspecific gene flow whose type and consequences substantially differ from gene flow mechanisms expected under sexual reproduction. Secondly, they may impact on sexuals' diversification rates either directly, by serving as stepping‐stones in speciation, or indirectly, by promoting the formation of pre‐ and postzygotic reproduction barriers among nascent species. Thirdly, they can potentially impact on spatial distribution of species, via direct or indirect (apparent) types of competition and Allee effects. For each such mechanism, we provide empirical examples of how natural sperm‐dependent asexuals impact the evolution of their sexual counterparts. In particular, we highlight that these broad effects may last beyond the tenure of the individual asexual lineages causing them, which challenges the traditional perception that asexual lineages are short‐lived evolutionary dead ends and minor sideshows. Our review also proposes new research directions to incorporate the aforementioned impacts of sperm‐dependent asexuals. These research directions will ultimately enhance our understanding of the evolution of genomes and biological interactions in general.more » « less
-
Abstract Reproduction is a fundamental aspect of life that affects all levels of biology, from genomes and development to population dynamics and diversification. The first Tree of Sex database synthesized a vast diversity of reproductive strategies and their intriguing distribution throughout eukaryotes. A decade on, we are reviving this initiative and greatly expanding its scope to provide the most comprehensive integration of knowledge on eukaryotic reproduction to date. In this perspective, we first identify important gaps in our current knowledge of reproductive strategies across eukaryotes. We then highlight a selection of questions that will benefit most from this new Tree of Sex project, including those related to the evolution of sex, modes of sex determination, sex chromosomes, and the consequences of various reproductive strategies. Finally, we outline our vision for the new Tree of Sex database and the consortium that will create it (treeofsex.org). The new database will cover all Eukaryota and include a wide selection of biological traits. It will also incorporate genomic data types that were scarce or non-existent at the time of the first Tree of Sex initiative. The new database will be publicly accessible, stable, and self-sustaining, thus greatly improving the accessibility of reproductive knowledge to researchers across disciplines for years to come. Lastly, the consortium will persist after the database is created to serve as a collaborative framework for research, prioritizing ethical standards in the collection, use, and sharing of reproductive data. The new Tree of Sex consortium is open, and we encourage all who are interested in this topic to join us.more » « less
-
Abstract AimThe long history of isolation of the Antarctic continent, coupled with the harsh ecological conditions of freezing temperatures, could affect the patterns of genetic diversity in the organisms living there. We aim (a) to test whether such pattern can be seen in a mitochondrial marker of bdelloid rotifers, a group of microscopic aquatic and limno‐terrestrial animals and (b) to speculate on the potential mechanisms driving the pattern. LocationFocus on Antarctica. TaxonRotifera Bdelloidea. MethodsWe analysed different metrics of genetic diversity, also spatially explicit ones, including number of haplotypes, accumulation curves, genetic distances, time to the most recent common ancestor, number of independently evolving units from DNA taxonomy, strength of the correlation between geographical and genetic distances, population genetics neutrality and differentiation indices, potential historical processes, obtained from an extensive sample of cytochrome oxidase subunit I (COI) sequences obtained from bdelloid rotifers. We included 2242 individuals from 23 species in a comparison between Antarctic and non‐Antarctic taxa, correcting for sample size directly in the analyses and then by confirming the results also using only a restricted dataset of nine well‐sampled species. ResultsAntarctic species had consistently lower genetic diversity and potential younger relative age than non‐Antarctic species, even if they were similar in sample size, geographical extent, neutrality and differentiation indices, and correlation between genetic and geographical distances. Main conclusionsThe extensive survey of genetic diversity in one mitochondrial marker in Antarctic bdelloids supports previous suggestions from other organisms that the origin and maintenance of terrestrial Antarctic fauna are different from those of other continents. Such differences could be speculated to be due, in the case of bdelloid rotifers, to the more recent origin of the species living there in comparison to non‐Antarctic species.more » « less
An official website of the United States government
